Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
2.
Nature ; 605(7909): 315-324, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314832

RESUMEN

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Pluripotentes , Cigoto , Humanos , Proteínas Cromosómicas no Histona/genética , Embrión de Mamíferos/citología , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/citología , Factores de Transcripción/genética , Cigoto/citología
3.
Nature ; 583(7815): 282-285, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32218527

RESUMEN

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Euterios/virología , Evolución Molecular , Genoma Viral/genética , Homología de Secuencia de Ácido Nucleico , Secuencia de Aminoácidos , Animales , Betacoronavirus/química , Betacoronavirus/clasificación , COVID-19 , China/epidemiología , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Genómica , Humanos , Malasia , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Recombinación Genética , SARS-CoV-2 , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/virología
4.
Mol Cell ; 70(2): 340-357.e8, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29628309

RESUMEN

Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.


Asunto(s)
Neoplasias de la Mama/enzimología , Proliferación Celular , Receptor alfa de Estrógeno/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo Mediador/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Activación Transcripcional , Animales , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células MCF-7 , Complejo Mediador/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Unión Proteica , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal , Activación Transcripcional/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 120(13): e2218819120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943875

RESUMEN

Certain ciliary transmembrane and membrane-tethered signaling proteins migrate from the ciliary tip to base via retrograde intraflagellar transport (IFT), essential for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. During this process, the BBSome functions as an adaptor between retrograde IFT trains and these signaling protein cargoes. The Arf-like 13 (ARL13) small GTPase resembles ARL6/BBS3 in facilitating these signaling cargoes to couple with the BBSome at the ciliary tip prior to loading onto retrograde IFT trains for transporting towards the ciliary base, while the molecular basis for how this intricate coupling event happens remains elusive. Here, we report that Chlamydomonas ARL13 only in a GTP-bound form (ARL13GTP) anchors to the membrane for diffusing into cilia. Upon entering cilia, ARL13 undergoes GTPase cycle for shuttling between the ciliary membrane (ARL13GTP) and matrix (ARL13GDP). To achieve this goal, the ciliary membrane-anchored BBS3GTP binds the ciliary matrix-residing ARL13GDP to activate the latter as an ARL13 guanine nucleotide exchange factor. At the ciliary tip, ARL13GTP recruits the ciliary matrix-residing and post-remodeled BBSome as an ARL13 effector to anchor to the ciliary membrane. This makes the BBSome spatiotemporally become available for the ciliary membrane-tethered phospholipase D (PLD) to couple with. Afterward, ARL13GTP hydrolyzes GTP for releasing the PLD-laden BBSome to load onto retrograde IFT trains. According to this model, hedgehog signaling defects associated with ARL13b and BBS3 mutations in humans could be satisfactorily explained, providing us a mechanistic understanding behind BBSome-cargo coupling required for proper ciliary signaling.


Asunto(s)
Síndrome de Bardet-Biedl , Cilios , Humanos , Cilios/metabolismo , Transporte de Proteínas/genética , Síndrome de Bardet-Biedl/genética , Proteínas Hedgehog/metabolismo , Proteínas de la Membrana/metabolismo , Guanosina Trifosfato/metabolismo , Flagelos/metabolismo
6.
Exp Cell Res ; 437(1): 113996, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508327

RESUMEN

Non-small cell lung cancer (NSCLC) is a kind of highly malignant tumor. Studies have shown that Vasculogenic mimicry (VM) may be responsible for dismal prognosis in NSCLC. Immunotherapy with programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) has significantly altered the treatment of assorted cancers, including NSCLC, but its role and mechanism in the formation of Vasculogenic mimicry (VM) in NSCLC remains unclear. This study aimed to investigate the role of the anti-PD-L1 antibody in the formation of VM in NSCLC and its possible mechanisms. The results showed that anti-PD-L1 antibody therapy could inhibit the growth of NSCLC-transplanted tumors and reduce the formation of VMs. In addition, this study found that anti-PD-L1 antibodies could increase the expression of the epithelial-mesenchymal transition (EMT) related factor E-cadherin. zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor regulating EMT. Knocking down ZEB1 could significantly inhibit tumor growth, as well as the expression of VE-cadherin and mmp2, while remarkably increase the expression of E-cadherin. During this process, the formation of VM was inhibited by knowing down ZEB1 in both in vitro and in vivo experiments of the constructed ZEB1 knockdown stable transfected cell strains. Therefore, in this study, we found that anti-PD-L1 antibodies may reduce the formation of VMs by inhibiting the EMT process.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pulmonares/genética
7.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457049

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Neuroimage ; 297: 120715, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945182

RESUMEN

Every individual experiences negative emotions, such as fear and anger, significantly influencing how external information is perceived and processed. With the gradual rise in brain-behavior relationship studies, analyses investigating individual differences in negative emotion processing and a more objective measure such as the response time (RT) remain unexplored. This study aims to address this gap by establishing that the individual differences in the speed of negative facial emotion discrimination can be predicted from whole-brain functional connectivity when participants were performing a face discrimination task. Employing the connectome predictive modeling (CPM) framework, we demonstrated this in the young healthy adult group from the Human Connectome Project-Young Adults (HCP-YA) dataset and the healthy group of the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) dataset. We identified distinct network contributions in the adult and adolescent predictive models. The highest represented brain networks involved in the adult model predictions included representations from the motor, visual association, salience, and medial frontal networks. Conversely, the adolescent predictive models showed substantial contributions from the cerebellum-frontoparietal network interactions. Finally, we observed that despite the successful within-dataset prediction in healthy adults and adolescents, the predictive models failed in the cross-dataset generalization. In conclusion, our study shows that individual differences in the speed of emotional facial discrimination can be predicted in healthy adults and adolescent samples using their functional connectivity during negative facial emotion processing. Future research is needed in the derivation of more generalizable models.

9.
BMC Plant Biol ; 24(1): 485, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822229

RESUMEN

BACKGROUND: Brassinosteroids (BRs) are a class of phytohormones that regulate a wide range of developmental processes in plants. BR-associated mutants display impaired growth and response to developmental and environmental stimuli. RESULTS: Here, we found that a BR-deficient mutant det2-1 displayed abnormal root gravitropic growth in Arabidopsis, which was not present in other BR mutants. To further elucidate the role of DET2 in gravity, we performed transcriptome sequencing and analysis of det2-1 and bri1-116, bri1 null mutant allele. Expression levels of auxin, gibberellin, cytokinin, and other related genes in the two mutants of det2-1 and bri1-116 were basically the same. However, we only found that a large number of JAZ (JASMONATE ZIM-domain) genes and jasmonate synthesis-related genes were upregulated in det2-1 mutant, suggesting increased levels of endogenous JA. CONCLUSIONS: Our results also suggested that DET2 not only plays a role in BR synthesis but may also be involved in JA regulation. Our study provides a new insight into the molecular mechanism of BRs on the root gravitropism.


Asunto(s)
Arabidopsis , Brasinoesteroides , Perfilación de la Expresión Génica , Gravitropismo , Raíces de Plantas , Brasinoesteroides/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Gravitropismo/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Mutación , Oxilipinas/metabolismo
10.
J Med Virol ; 96(3): e29454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445768

RESUMEN

Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , Vacunas Combinadas , Proteínas Fúngicas , Saccharomyces cerevisiae/genética , COVID-19/prevención & control , SARS-CoV-2 , Vacunación
11.
Plant Physiol ; 191(2): 1167-1185, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36494097

RESUMEN

All biological functions evolve by fixing beneficial mutations and removing deleterious ones. Therefore, continuously fixing and removing the same essential function to separately diverge monophyletic gene families sounds improbable. Yet, here we report that brassinosteroid insensitive1 kinase inhibitor1 (BKI1)/membrane-associated kinase regulators (MAKRs) regulating a diverse function evolved into BKI1 and MAKR families from a common ancestor by respectively enhancing and losing ability to bind brassinosteroid receptor brassinosteroid insensitive1 (BRI1). The BKI1 family includes BKI1, MAKR1/BKI1-like (BKL) 1, and BKL2, while the MAKR family contains MAKR2-6. Seedless plants contain only BKL2. In seed plants, MAKR1/BKL1 and MAKR3, duplicates of BKL2, gained and lost the ability to bind BRI1, respectively. In angiosperms, BKL2 lost the ability to bind BRI1 to generate MAKR2, while BKI1 and MAKR6 were duplicates of MAKR1/BKL1 and MAKR3, respectively. In dicots, MAKR4 and MAKR5 were duplicates of MAKR3 and MAKR2, respectively. Importantly, BKI1 localized in the plasma membrane, but BKL2 localized to the nuclei while MAKR1/BKL1 localized throughout the whole cell. Importantly, BKI1 strongly and MAKR1/BKL1 weakly inhibited plant growth, but BKL2 and the MAKR family did not inhibit plant growth. Functional study of the chimeras of their N- and C-termini showed that only the BKI1 family was partially reconstructable, supporting stepwise evolution by a seesaw mechanism between their C- and N-termini to alternately gain an ability to bind and inhibit BRI1, respectively. Nevertheless, the C-terminal BRI1-interacting motif best defines the divergence of BKI1/MAKRs. Therefore, BKI1 and MAKR families evolved by gradually gaining and losing the same function, respectively, extremizing divergent evolution and adding insights into gene (BKI1/MAKR) duplication and divergence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitosteroles , Receptores de Esteroides , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Arabidopsis/metabolismo , Fitosteroles/metabolismo , Transducción de Señal , Receptores de Esteroides/metabolismo
12.
Cytokine ; 181: 156671, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943739

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), a metabolic disease associated with obesity and type 2 diabetes. Due to its complex pathogenesis, there are still limitations in the knowledge of the disease. To date, no drug has been approved to treat NAFLD. This study aims to explore the role and mechanism of Ebselen (EbSe) in NAFLD. A high-fat diet-induced mouse model of NAFLD was employed to investigate EbSe function in NAFLD mice by EbSe gavage and to regularly monitor the mouse body weight. HE and oil red O staining were performed, respectively, to detect the pathological damage and lipid accumulation in mouse liver tissues. The biochemical and ELISA kits were employed to measure the levels of ALT, AST, TG, TC, LDL-C, HDL-C and pro-inflammatory cytokines within mouse serum or liver tissue. The expression of key proteins of PPARα, fatty acid ß oxidation-related protein, PI3K/Akt and TLR4/JNK signaling pathway was detected by western blot. EbSe significantly downregulated body weight, liver weight and liver lipid accumulation in NAFLD mice and downregulated ALT, AST, TG, TC, LDL-C and increased HDL-C serum levels. EbSe upregulated the expression levels of PPARα and fatty acid ß oxidation-associated proteins CPT1α, ACOX1, UCP2 and PGC1α. EbSe promoted Akt and PI3K phosphorylation, and inhibited TLR4 expression and JNK phosphorylation. EbSe can upregulate PPARα to promote fatty acid ß-oxidation and improve hepatic lipid metabolism. Meanwhile, EbSe also activated PI3K/Akt and inhibited TLR4/JNK signaling pathway. EbSe is predicted to be an effective therapeutic drug for treating NAFLD.

13.
BMC Cancer ; 24(1): 633, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783271

RESUMEN

BACKGROUND: PD-L1 overexpression is commonly observed in various malignancies and is strongly correlated with poor prognoses for cancer patients. Moreover, PD-L1 has been shown to play a significant role in promoting angiogenesis and epithelial-mesenchymal transition (EMT) processes across different cancer types. METHODS: The relationship between PD-L1 and vasculogenic mimicry as well as epithelial-mesenchymal transition (EMT) was explored by bioinformatics approach and immunohistochemistry. The functions of PD-L1 in regulating the expression of ZEB1 and the EMT process were assessed by Western blotting and q-PCR assays. The impact of PD-L1 on the migratory and proliferative capabilities of A549 and H1299 cells was evaluated through wound healing, cell invasion, and CCK8 assays following siRNA-mediated PD-L1 knockdown. Tube formation assay was utilized to evaluate the presence of VM structures. RESULTS: In this study, increased PD-L1 expression was observed in A549 and H1299 cells compared to normal lung epithelial cells. Immunohistochemical analysis revealed a higher prevalence of VM structures in the PD-L1-positive group compared to the PD-L1-negative group. Additionally, high PD-L1 expression was also found to be significantly associated with advanced TNM stage and increased metastasis. Following PD-L1 knockdown, NSCLC cells exhibited a notable reduction in their ability to form tube-like structures. Moreover, the levels of key EMT and VM-related markers, including N-cadherin, MMP9, VE-cadherin, and VEGFA, were significantly decreased, while E-cadherin expression was upregulated. In addition, the migration and proliferation capacities of both cell lines were significantly inhibited after PD-L1 or ZEB1 knockdown. CONCLUSIONS: Knockdown PD-L1 can inhibit ZEB1-mediated EMT, thereby hindering the formation of VM in NSCLC.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Técnicas de Silenciamiento del Gen , Neoplasias Pulmonares , Neovascularización Patológica , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Humanos , Transición Epitelial-Mesenquimal/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Línea Celular Tumoral , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Células A549 , Persona de Mediana Edad
14.
J Magn Reson Imaging ; 59(5): 1710-1722, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37497811

RESUMEN

BACKGROUND: Accurate diagnosis of breast lesions and discrimination of axillary lymph node (ALN) metastases largely depend on radiologist experience. PURPOSE: To develop a deep learning-based whole-process system (DLWPS) for segmentation and diagnosis of breast lesions and discrimination of ALN metastasis. STUDY TYPE: Retrospective. POPULATION: 1760 breast patients, who were divided into training and validation sets (1110 patients), internal (476 patients), and external (174 patients) test sets. FIELD STRENGTH/SEQUENCE: 3.0T/dynamic contrast-enhanced (DCE)-MRI sequence. ASSESSMENT: DLWPS was developed using segmentation and classification models. The DLWPS-based segmentation model was developed by the U-Net framework, which combined the attention module and the edge feature extraction module. The average score of the output scores of three networks was used as the result of the DLWPS-based classification model. Moreover, the radiologists' diagnosis without and with the DLWPS-assistance was explored. To reveal the underlying biological basis of DLWPS, genetic analysis was performed based on RNA-sequencing data. STATISTICAL TESTS: Dice similarity coefficient (DI), area under receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and kappa value. RESULTS: The segmentation model reached a DI of 0.828 and 0.813 in the internal and external test sets, respectively. Within the breast lesions diagnosis, the DLWPS achieved AUCs of 0.973 in internal test set and 0.936 in external test set. For ALN metastasis discrimination, the DLWPS achieved AUCs of 0.927 in internal test set and 0.917 in external test set. The agreement of radiologists improved with the DLWPS-assistance from 0.547 to 0.794, and from 0.848 to 0.892 in breast lesions diagnosis and ALN metastasis discrimination, respectively. Additionally, 10 breast cancers with ALN metastasis were associated with pathways of aerobic electron transport chain and cytoplasmic translation. DATA CONCLUSION: The performance of DLWPS indicates that it can promote radiologists in the judgment of breast lesions and ALN metastasis and nonmetastasis. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Estudios Retrospectivos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética
15.
Brain Behav Immun ; 119: 945-964, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759736

RESUMEN

Post-traumatic stress disorder (PTSD) is a debilitating mental health disease related to traumatic experience, and its treatment outcomes are unsatisfactory. Accumulating research has indicated that cannabidiol (CBD) exhibits anti-PTSD effects, however, the underlying mechanism of CBD remains inadequately investigated. Although many studies pertaining to PTSD have primarily focused on aberrations in neuronal functioning, the present study aimed to elucidate the involvement and functionality of microglia/macrophages in PTSD while also investigated the modulatory effects of CBD on neuroinflammation associated with this condition. We constructed a modified single-prolonged stress (SPS) mice PTSD model and verified the PTSD-related behaviors by various behavioral tests (contextual freezing test, elevated plus maze test, tail suspension test and novel object recognition test). We observed a significant upregulation of Iba-1 and alteration of microglial/macrophage morphology within the prefrontal cortex and hippocampus, but not the amygdala, two weeks after the PTSD-related stress, suggesting a persistent neuroinflammatory phenotype in the PTSD-modeled group. CBD (10 mg/kg, i.p.) inhibited all PTSD-related behaviors and reversed the alterations in both microglial/macrophage quantity and morphology when administered prior to behavioral assessments. We further found increased pro-inflammatory factors, decreased PSD95 expression, and impaired synaptic density in the hippocampus of the modeled group, all of which were also restored by CBD treatment. CBD dramatically increased the level of anandamide, one of the endocannabinoids, and cannabinoid type 2 receptors (CB2Rs) transcripts in the hippocampus compared with PTSD-modeled group. Importantly, we discovered the expression of CB2Rs mRNA in Arg-1-positive cells in vivo and found that the behavioral effects of CBD were diminished by CB2Rs antagonist AM630 (1 mg/kg, i.p.) and both the behavioral and molecular effects of CBD were abolished in CB2Rs knockout mice. These findings suggest that CBD would alleviate PTSD-like behaviors in mice by suppressing PTSD-related neuroinflammation and upregulation and activation of CB2Rs may serve as one of the underlying mechanisms for this therapeutic effect. The present study offers innovative experimental evidence supporting the utilization of CBD in PTSD treatment from the perspective of its regulation of neuroinflammation, and paves the way for leveraging the endocannabinoid system to regulate neuroinflammation as a potential therapeutic approach for psychiatric disorders.


Asunto(s)
Encéfalo , Cannabidiol , Modelos Animales de Enfermedad , Microglía , Enfermedades Neuroinflamatorias , Receptor Cannabinoide CB2 , Trastornos por Estrés Postraumático , Animales , Cannabidiol/farmacología , Receptor Cannabinoide CB2/metabolismo , Masculino , Ratones , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Endocannabinoides/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología
16.
Pediatr Res ; 95(1): 227-232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37580551

RESUMEN

BACKGROUND: children who undergo CPB operations are at an elevated risk of infection due to immunosuppression. This study aims to investigate the association between lymphopenia following CPB and early postoperative infection in children. METHODS: A retrospective analysis including 41 children under 2 years old underwent CPB. Among them, 9 subjects had an early postoperative infection, and 32 subjects were period-matched without infection. Inflammatory cytokines, serum CRP and PCT values were measured in plasma, additionally, circulating total leucocyte and lymphocyte subpopulations were counted. RESULTS: Infected subjects exhibited significantly higher levels of inflammatory cytokines, including IL-6, IL-8, IL-10, IL-1ß and TNF-α, than non-infected subjects after CPB. Additionally, lower absolute number of lymphocyte and their subpopulations CD3+ T cells, CD4+ T-helper cells and CD8+cytotoxic T-cells, were observed in infected subjects. The impairment of T-cells Immune was found to be associated with higher levels of inflammatory cytokines IL-10. The ROC demonstrated that the absolute number of CD3+ T-cells <1934/ul, CD4+ T helper cells <1203/ul and CD8+cytotoxic T-cells <327/ul were associated with early postoperative infection. CONCLUSION: Higher levels of inflammatory cytokines resulted in T-cells lymphopenia after CPB, which significantly increasing the risk of postoperative infection in infants and young children. IMPACT: Infection complications after cardiopulmonary bypass (CPB) in pediatric CHD patients are serious issues, identifing the infection from after CPB remains a challenging. CPB can release numerous inflammatory cytokines associated with T cells lymphopenia, which increases the risk of postoperative infection after surgery. Monitoring T cells lymphopenia maybe more beneficial to predict early postoperative infection than C-reactive protein and procalcitonin.


Asunto(s)
Puente Cardiopulmonar , Linfopenia , Lactante , Humanos , Niño , Preescolar , Puente Cardiopulmonar/efectos adversos , Interleucina-10 , Estudios Retrospectivos , Citocinas , Linfocitos T , Linfopenia/etiología
17.
Pharmacol Res ; 205: 107224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777113

RESUMEN

INTRODUCTION: Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES: To explore the role of Midline-1 (Mid1) in synovial activation. METHODS: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS: An increase in Mid1, an E3 ubiquitin ligase, was observed in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 defect on arthritis. CONCLUSION: Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Dipeptidil Peptidasa 4 , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Sinovitis , Ubiquitina-Proteína Ligasas , Animales , Artritis Reumatoide/metabolismo , Humanos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/genética , Artritis Experimental/metabolismo , Artritis Experimental/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Sinovitis/metabolismo , Sinovitis/patología , Ratones Noqueados , Ubiquitinación , Ubiquitina/metabolismo , Ratones Endogámicos NOD , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Masculino , Proliferación Celular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sinoviocitos/metabolismo , Sinoviocitos/patología
18.
Support Care Cancer ; 32(6): 377, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780815

RESUMEN

PURPOSE: To explore symptom clusters and interrelationships using a network analysis approach among symptoms in patients with lung tumors who underwent computed tomography (CT)-guided microwave ablation (MWA). METHODS: A longitudinal study was conducted, and 196 lung tumor patients undergoing MWA were recruited and were measured at 24 h, 48 h, and 72 h after MWA. The Chinese version of the MD Anderson Symptom Inventory and the Revised Lung Cancer Module were used to evaluate symptoms. Network analyses were performed to explore the symptom clusters and interrelationships among symptoms. RESULTS: Four stable symptom communities were identified within the networks. Distress, weight loss, and chest tightness were the central symptoms. Distress, and weight loss were also the most key bridge symptoms, followed by cough. Three symptom networks were temporally stable in terms of symptom centrality, global connectivity, and network structure. CONCLUSION: Our findings identified the central symptoms, bridge symptoms, and the stability of symptom networks of patients with lung tumors after MWA. These network results will have important implications for future targeted symptom management intervention development. Future research should focus on developing precise interventions for targeting central symptoms and bridge symptoms to promote patients' health.


Asunto(s)
Neoplasias Pulmonares , Microondas , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/cirugía , Masculino , Femenino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Estudios Longitudinales , Microondas/uso terapéutico , Anciano , Adulto , Técnicas de Ablación/métodos
19.
Eur J Public Health ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573176

RESUMEN

BACKGROUND: The American Heart Association recently released an updated algorithm for evaluating cardiovascular health-Life's Essential 8 (LE8). However, the associations between changes in LE8 score over time and risk of cardiovascular disease (CVD) remain unclear. METHODS: We investigated associations between 6-year changes (2006-12) in LE8 score and risk of subsequent CVD events (2012-20) among 53 363 Chinese men and women from the Kailuan Study, who were free from CVD in 2012. The LE8 score was calculated based on eight components: diet quality, physical activity, smoking status, sleep health, body mass index, blood lipids, blood glucose and blood pressure. Multivariable-adjusted Cox proportional-hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: We documented 4281 incident CVD cases during a median of 7.7 years of follow-up. Compared with participants whose LE8 scores remained stable in a 6-year period, those with the large increases of LE8 score over the 6-year period had a lower risk of CVD, heart disease and stroke in the subsequent 8 years [HRs and 95% CIs: 0.67 (0.64, 0.70) for CVD, 0.65 (0.61, 0.69) for heart disease, 0.71 (0.67, 0.76) for stroke, all Ptrend < 0.001]. Conversely, those with the large decreases of LE8 score had 47%, 51% and 41% higher risk for CVD, heart disease and stroke, respectively. These associations were consistent across the subgroups stratified by risk factors. CONCLUSIONS: Improving LE8 score in a short- and moderate-term was associated with a lower CVD risk, whereas decreased LE8 score over time was associated with a higher risk.

20.
J Integr Neurosci ; 23(2): 34, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38419443

RESUMEN

BACKGROUND: Ischemic stroke is the most common form of stroke and the second most common cause of death and incapacity worldwide. Its pathogenesis and treatment have been the focus of considerable research. In traditional Chinese medicine, the root of Mongolian astragalus has been important in the treatment of stroke since ancient times. Astragalus polysaccharide (APS) is a key active ingredient of astragalus and offers therapeutic potential for conditions affecting the neurological system, the heart, cancer, and other disorders. However, it is not yet known how APS works to protect against ischemic stroke. METHODS: Rats were subjected to middle cerebral artery occlusion (MCAO) to imitate localized cerebral ischemia. Each of four experimental groups (normal, sham, MCAO, and MCAO+APS) contained 12 adult male Sprague-Dawley (SD) rats selected randomly from a total of 48 rats. Following successful establishment of the model, rats in the MCAO+APS group received intraperitoneal injection of APS (50 mg/kg) once daily for 14 days, whereas all other groups received no APS. The Bederson nerve function score and the forelimb placement test were used to detect motor and sensory function defects, while Nissl staining was used to investigate pathological defects in the ventroposterior thalamic nucleus (VPN). Immunohistochemical staining and Western blot were used to evaluate the expression of Neurogenic locus notch homolog protein 1 (Notch1), hairy and enhancer of split 1 (Hes1), phospho-nuclear factor-κB p65 (p-NFκB p65), and nuclear factor-κB p65 (NFκB p65) proteins in the VPN on the ischemic side of MCAO rats. RESULTS: APS promoted the recovery of sensory and motor function, enhanced neuronal morphology, increased the number of neurons, and inhibited the expression of Notch1/NFκB signaling pathway proteins in the VPN of rats with cerebral ischemia. CONCLUSION: After cerebral ischemia, APS can alleviate symptoms of secondary damage to the VPN, which may be attributed to the suppression of the Notch1/NFκB pathway.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Masculino , Animales , Ratas Sprague-Dawley , FN-kappa B/metabolismo , Isquemia Encefálica/metabolismo , Neuronas/metabolismo , Transducción de Señal , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Receptor Notch1/metabolismo , Receptor Notch1/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA