Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(8): 7997-8014, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39194690

RESUMEN

Liver fibrosis is an important step in the transformation of chronic liver disease into cirrhosis and liver cancer, and structural changes and functional disorders of liver sinusoidal endothelial cells (LSECs) are early events in the occurrence of liver fibrosis. Therefore, it is necessary to identify the key regulatory genes of endothelial dysfunction in the process of liver fibrosis to provide a reference for the diagnosis and treatment of liver fibrosis. In this study, we identified 230 common differentially expressed genes (Co-DEGs) by analyzing transcriptomic data of primary LSECs from three different liver fibrosis mouse models (carbon tetrachloride; choline-deficient, l-amino acid-defined diet; and nonalcoholic steatohepatitis). Enrichment analysis revealed that the Co-DEGs were mainly involved in regulating the inflammatory response, immune response, angiogenesis, formation and degradation of the extracellular matrix, and mediating chemokine-related pathways. A Venn diagram analysis was used to identify 17 key genes related to the progression of liver cirrhosis. Regression analysis using the Lasso-Cox method identified genes related to prognosis among these key genes: SOX4, LGALS3, SERPINE2, CD52, and LPXN. In mouse models of liver fibrosis (bile duct ligation and carbon tetrachloride), all five key genes were upregulated in fibrotic livers. This study identified key regulatory genes for endothelial dysfunction in liver fibrosis, namely SOX4, LGALS3, SERPINE2, CD52, and LPXN, which will provide new targets for the development of therapeutic strategies targeting endothelial dysfunction in LSECs and liver fibrosis.

2.
EMBO Rep ; 23(6): e54275, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35437924

RESUMEN

Our understanding of human hepatocellular carcinoma (HCC) development and progression has been hampered by the lack of in vivo models. We performed a genetic screen of 10 oncogenes and genetic mutations in Fah-ablated immunodeficient mice in which primary human hepatocytes (PHHs) are used to reconstitute a functional human liver. We identified that MYC, TP53R249S , and KRASG12D are highly expressed in induced HCC (iHCC) samples. The overexpression of MYC and TP53R249S transform PHHs into iHCC in situ, though the addition of KRASG12D significantly increases the tumorigenic efficiency. iHCC, which recapitulate the histological architecture and gene expression characteristics of clinical HCC samples, reconstituted HCC after serial transplantations. Transcriptomic analysis of iHCC and PHHs showed that MUC1 and FAP are expressed in iHCC but not in normal livers. Chimeric antigen receptor (CAR) T cells against these two surface markers efficiently lyse iHCC cells. The properties of iHCC model provide a biological basis for several clinical hallmarks of HCC, and iHCC may serve as a model to study HCC initiation and to identify diagnostic biomarkers and targets for cellular immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Hepatocitos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Proteínas Proto-Oncogénicas p21(ras)
3.
Biochem Biophys Res Commun ; 639: 20-28, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36463757

RESUMEN

Serum amyloid A (SAA) is an acute response protein that mainly produced by hepatocytes, and it can promote endothelial dysfunction via a pro-inflammatory and pro-thrombotic effect in atherosclerosis and renal disease. Overdose of Acetaminophen (APAP) will cause hepatotoxicity accompany with hepatocyte necrosis, liver sinusoidal endothelial cells (LSECs) damage and thrombosis in liver. However, whether SAA plays a role in APAP-induced liver toxicity remains unclear. Here, we evaluated the Saa1/2 expression in APAP-induced liver injury, and found that Saa1/2 production was significantly increased in an autocrine manner in APAP injury model. Moreover, we used neutralizing antibody (anti-SAA) to block the function of serum Saa1/2. We found that neutralizing serum Saa1/2 protected against APAP-induced liver injuries and increased the survival rate of mice that were treated with lethal dose APAP. Further investigations showed that blocking Saa1/2 reduced APAP-induced sinusoidal endothelium damage, hemorrhage and thrombosis. In addition, in vitro experiments showed that Saa1/2 augmented the toxic effect of APAP on LSECs, and Saa1/2 promoted platelets aggregation on LSECs cell membrane. Taken together, this study suggests that Saa1/2 may play a critical role in APAP-induced liver damages through platelets aggregation and sinusoidal damage. Therefore, we conceptually demonstrate that inhibition of SAA may be a potential intervention for APAP-directed acute liver injuries.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Animales , Acetaminofén/toxicidad , Proteína Amiloide A Sérica/metabolismo , Agregación Plaquetaria , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Células Endoteliales , Hígado/metabolismo , Hepatocitos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Ratones Endogámicos C57BL
4.
Curr Issues Mol Biol ; 44(2): 470-482, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35723318

RESUMEN

Liver regeneration is a complicated biological process orchestrated by various liver resident cells. Hepatic cell proliferation and reconstruction of the hepatic architecture involve multiple signaling pathways. It has been reported that the Hh signal is involved in liver regeneration. However, the signal transduction pathways and cell types involved are ill studied. This study aimed to investigate hedgehog signal response cell types and the specific molecular mechanism involved in the process of liver regeneration. Partial hepatectomy (PH) of 70% was performed on ICR (Institute of Cancer Research) mice to study the process of liver regeneration. We found that the hedgehog signal was activated significantly after PH, including hedgehog ligands, receptors and intracellular signaling molecules. Ligand signals were mainly expressed in bile duct cells and non-parenchymal hepatic cells, while receptors were expressed in hepatocytes and some non-parenchymal cells. Inhibition of the hedgehog signal treated with vismodegib reduced the liver regeneration rate after partial hepatectomy, including inhibition of hepatic cell proliferation by decreasing Cyclin D expression and disturbing the cell cycle through the accumulation of Cyclin B. The current study reveals the important role of the hedgehog signal and its participation in the regulation of hepatic cell proliferation and the cell cycle during liver regeneration. It provides new insight into the recovery of the liver after liver resection.

5.
Arch Biochem Biophys ; 697: 108694, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33232716

RESUMEN

Excessive ethanol consumption causes cellular damage, leading to fetal alcohol syndrome and alcohol liver diseases, which are frequently seen with vitamin D (VD) deficiency. A great deal of progress has been achieved in the mechanisms of ethanol-induced hepatocyte damage. However, there are limited intervention means to reduce or rescue hepatocytes damage caused by ethanol. On the basis of our preliminary limited screen process, calcitriol showed a positive effect on protecting hepatocyte viability. Therefore, the molecular basis is worth elucidating. We found that calcitriol pretreatment markedly improved the cell viability, decreased cell apoptosis and oxidative stress and alleviated the abnormal mitochondrial morphology and membrane potential of hepatocytes induced by ethanol. Notably, autophagy was significantly enhanced by calcitriol, as evident by the increasing number of autophagosomes and autolysosomes, upregulated LC3B-Ⅱ and ATG5 levels, and promotion of p62 degradation. Furthermore, calcitriol pretreatment increased the colocalization of GFP-LC3-labeled autophagosomes with mitochondria, suggesting that calcitriol effectively promoted ethanol-induced mitophagy in hepatocytes. In addition, the inhibition of autophagy attenuated the protective and preventive effect of calcitriol. Furthermore, the effect of calcitriol on autophagy was regulated by AMPK/mTOR signaling, and signaling transduction was dependent on the Vitamin D receptor (VDR). In conclusion, calcitriol ameliorates ethanol-induced hepatocyte damage by enhancing autophagy. It may offer a convenient preventive and hepatoprotective mean for people on occasional social drink.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Calcitriol/farmacología , Etanol/toxicidad , Hígado/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Hígado/citología , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 529(2): 474-479, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32703454

RESUMEN

Currently, there is a growing interest in understanding the cellular and molecular events of immune-cell trafficking and recruitment of hepatic stellate cells (HSCs) in liver diseases. Aberrant activation of HSCs is the key event leading to chronic liver fibrosis. However, the underlying mechanisms of the recruitment of HSCs in a locally injured liver are not clearly understood. Here, we report a new experimental approach for the study of inflammatory responses as well as the recruitment of HSCs into the localized cryolesion. We observed a significant liver damage accompanied by the up-regulation of plasma ALT and AST. In addition, we also found increased levels of MCP-1, IL-6 and IL-10 cytokines. The peak cytokine levels were detected at 8 h after injury, followed by intrahepatic infiltration of neutrophils and monocytes into the injury site (from 8 h to day 3), while the kupffer cells (KCs) and HSCs were mainly detected on day 3 after injury. Interestingly, the depletion of KCs, but not neutrophils, reduced the directional recruitment and accumulation of HSCs at the injury site. Moreover, the combinatorial recruitment of KCs and HSCs resulted in the gradual restoration of fibrotic area to almost typical histological appearance on day 14 post-injury. In conclusion, our data demonstrated a localized infiltration and accumulation of neutrophils and monocytes at a "predefined loci", and further revealed that KCs are critical for the recruitment of HSCs during injury, and thus, may play an important role in tissue repair.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Células Estrelladas Hepáticas/patología , Macrófagos del Hígado/patología , Cirrosis Hepática/patología , Animales , Tetracloruro de Carbono , Movimiento Celular , Modelos Animales de Enfermedad , Femenino , Hígado/patología , Ratones Endogámicos C57BL
7.
J Biol Chem ; 292(46): 19122-19132, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28935668

RESUMEN

We report here an approach to redirecting somatic cell fate under chemically defined conditions without transcription factors. We start by converting mouse embryonic fibroblasts to epithelial-like cells with chemicals and growth factors. Subsequent cell fate mapping reveals a robust induction of SOX17 in the resulting epithelial-like cells that can be further reprogrammed to endodermal progenitor cells. Interestingly, these cells can self-renew in vitro and further differentiate into albumin-producing hepatocytes that can rescue mice from acute liver injury. Our results demonstrate a rational approach to convert mouse embryonic fibroblasts to hepatocytes and suggest that this mechanism-driven approach may be generalized for other cells.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Endodermo/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células Madre/citología , Animales , Diferenciación Celular , Autorrenovación de las Células , Células Cultivadas , Femenino , Proteínas HMGB/análisis , Hepatocitos/citología , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción SOXF/análisis
8.
Cell Physiol Biochem ; 51(4): 1533-1543, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30497075

RESUMEN

BACKGROUND/AIMS: Hepatocyte-like cells derived from human pluripotent stem cells could be an important cell source for hepatocyte transplantation. The present study investigated the effect of retaining mTeSR1 medium during hepatic differentiation on hepatocyte-like cells in vitro. METHODS: Human embryonic stem cell line H1 were treated with activin A and bone morphogenetic protein 4 (BMP4) for definitive endoderm (DE) cell induction and subsequently treated with BMP2 and fibroblast growth factor 4 (FGF4) for early hepatic cell induction. Hepatocyte growth factor (HGF) and fibroblast growth factor (KGF) were added for early hepatic cell expansion and then mixed with oncostatin-M for maturation. During DE induction, 0%, 25%, 50% and 75% concentrations of mTeSR1 medium were separately added for early hepatic induction and expansion. For optimization, the expression levels of SRY-related HMG-box 17 (SOX17) and forkhead box A2 (FOXA2) at day 4, alpha fetoprotein (AFP) and hepatocyte nuclear factor 4α (HNF4α) at day 15, and albumin (ALB) at day 25 were quantified in differentiated cells by qRT-PCR. The ALB-positive cell proportion was measured by flow cytometry. Functional tests including ALB secretion and indocyanine green (ICG) angiography uptake and release by ELISA, urea production by urea assay kit, and glycogen storage ability by periodic acid Schif reaction (PAS) staining were performed in the differentiated cells. The induced pluripotent stem (iPS) cells were used to examine whether the optimized method was suitable for differentiating iPS cells. DE and hepatic markers were detected by immunostaining, and functional testing was performed as described above. Flow cytometry with an Annexin V-FITC apoptosis detection kit and fluorescence microscopy with Hoechst 33258 were used to analyze apoptosis in differentiated cells derived from H1 cells. RESULTS: All differentiated cells with retention of 0%, 25%, 50% and 75% mTeSR1 expressed SOX17, FOXA2, AFP, HNF4α, and ALB, while higher expression levels were observed in differentiated cells in the 0% and 25% groups. The flow cytometry results showed that the proportion of ALB-positive differentiated cells derived from H1 cells was higher in the 25% mTeSR1 group than in other groups. However, no significant difference in ALB secretion, urea production, ICG uptake and release and glycogen storage ability was detected between the 25% and 0% groups. The iPS cells could differentiate into hepatocyte-like cells with 25% mTeSR1 retention. The apoptosis ratio of differentiated cells was lower in the 25% mTeSR1 group than in the 0% mTeSR1 group. CONCLUSION: Retaining 25% mTeSR1 medium during hepatic differentiation has been proposed to increase the percentage of ALB-positive cells and cell survival by decreasing cell apoptosis.


Asunto(s)
Apoptosis , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Hepatocitos/citología , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo
9.
Antioxidants (Basel) ; 13(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38929092

RESUMEN

Heat stress-induced biochemical alterations in ovarian follicles compromise the function of granulosa cells (GCs) and the developmental competence of oocytes. Summer heat stress can have a far-reaching negative impact on overall fertility and reproductive success. Together with the heat stress, the rise of assisted reproductive technologies (ART), potential confounding hazards of in vitro handling and the absence of systemic body support in ART makes it imperative to study the heat stress ameliorative effects of vitamin C under in vitro conditions. Using in vitro heat stress treatment of 43 °C for two hours in bovine GCs, we studied the effects of vitamin C on cell growth, oxidative stress, apoptosis and cell cycle progression together with a comprehensive metabolomics profiling. This study investigates the molecular milieu underlying the vitamin C (VC)-led alleviation of heat-related disruptions to metabolic processes in bovine GCs. The supplementation of VC ameliorated the detrimental effects of heat stress by reducing oxidative stress and apoptosis while restoring cell proliferation. Normal cell function restoration in treated GCs was demonstrated through the finding of significantly high levels of progesterone. We observed a shift in the metabolome from biosynthesis to catabolism, mostly dominated by the metabolism of amino acids (decreased tryptophan, methionine and tyrosine) and the active TCA cycle through increased Succinic acid. The Glutathione and tryptophan metabolism were important in ameliorating the inflammation and metabolism nexus under heat stress. Two significant enzymes were identified, namely tryptophan 2,3-dioxygenase (TDO2) and mitochondrial phenylalanyl-tRNA synthetase (FARS2). Furthermore, our findings provide insight into the significance of B-complex vitamins in the context of heat stress during VC supplementation. This study underscores the importance of VC supplementation in heat stress and designates multiple metabolic intervention faucets in the context of ameliorating heat stress and enhancing reproductive efficiency.

10.
Diabetes Metab J ; 48(4): 802-815, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38310881

RESUMEN

BACKGRUOUND: Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown. METHODS: The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro. RESULTS: ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis. CONCLUSION: The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.


Asunto(s)
Receptor de Asialoglicoproteína , Dieta Alta en Grasa , Resistencia a la Insulina , Hígado , Ratones Noqueados , Transducción de Señal , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Humanos , Células Hep G2 , Hígado/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Masculino , Insulina/sangre , Insulina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Síndrome Metabólico/metabolismo , Síndrome Metabólico/etiología , Gluconeogénesis
11.
Stem Cell Res Ther ; 15(1): 48, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378583

RESUMEN

BACKGROUND: Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS: Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS: The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION: Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Macrófagos del Hígado , Macrófagos del Hígado/fisiología , Hígado , Hepatocitos/trasplante , Regeneración Hepática/fisiología
12.
Adv Sci (Weinh) ; 11(31): e2309940, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874114

RESUMEN

Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome-based cell-free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell-free and platinum-based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70-90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.


Asunto(s)
Cirrosis Hepática , Agujas , Animales , Cirrosis Hepática/terapia , Ratones , Modelos Animales de Enfermedad , Humanos , Masculino , Sistema Libre de Células
13.
Nat Genet ; 56(5): 953-969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627598

RESUMEN

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/ß-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.


Asunto(s)
Homeostasis , Regeneración Hepática , Hígado , Vía de Señalización Wnt , Animales , Regeneración Hepática/genética , Ratones , Hígado/metabolismo , Vía de Señalización Wnt/genética , Hepatocitos/metabolismo , Hepatocitos/citología , Proliferación Celular/genética , Análisis de la Célula Individual , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Transcriptoma , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino
14.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410795

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is prevalent worldwide; about 25% of NAFLD silently progress into steatohepatitis, in which some of them may develop into fibrosis, cirrhosis and liver failure. However, few drugs are available for NAFLD, partly because of an incomplete understanding of its pathogenic mechanisms. Here, using in vivo and in vitro gain- and loss-of-function approaches, we identified up-regulated DKK1 plays a pivotal role in high-fat diet-induced NAFLD and its progression. Mechanistic analysis reveals that DKK1 enhances the capacity of hepatocytes to uptake fatty acids through the ERK-PPARγ-CD36 axis. Moreover, DKK1 increased insulin resistance by activating the JNK signaling, which in turn exacerbates disorders of hepatic lipid metabolism. Our finding suggests that DKK1 may be a potential therapeutic and diagnosis candidate for NAFLD and metabolic disorder progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Dieta Alta en Grasa , Hepatocitos , Péptidos y Proteínas de Señalización Intercelular , Metabolismo de los Lípidos/genética , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico/genética , Antígenos CD36/metabolismo
15.
Microsc Microanal ; 18(1): 99-106, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22214557

RESUMEN

A novel self-organizing behavior of cellularized gels composed of collagen type 1 that may have utility for tissue engineering is described. Depending on the starting geometry of the tissue culture well, toroidal rings of cells or hollow spheroids were prompted to form autonomously when cells were seeded onto the top of gels and the gels released from attachment to the culture well 12 to 24 h after seeding. Cells within toroids assumed distinct patterns of alignment not seen in control gels in which cells had been mixed in. In control gels, cells formed complex three-dimensional arrangements and assumed relatively higher levels of heterogeneity in expression of the fibronectin splice variant ED-A--a marker of epithelial mesenchymal transformation. The tissue-like constructs resulting from this novel self-organizing behavior may have uses in wound healing and regenerative medicine, as well as building blocks for the iterative assembly of synthetic biological structures.


Asunto(s)
Colágeno/metabolismo , Hidrogeles , Ingeniería de Tejidos/métodos , Animales , Humanos , Conejos , Ratas , Medicina Regenerativa/métodos
16.
Biomed Pharmacother ; 154: 113568, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029543

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a global epidemic and poses a major threat to public health. In addition to COVID-19 manifesting as a respiratory disease, patients with severe disease also have complications in extrapulmonary organs, including liver damage. Abnormal liver function is relatively common in COVID-19 patients; its clinical manifestations can range from an asymptomatic elevation of liver enzymes to decompensated hepatic function, and liver injury is more prevalent in severe and critical patients. Liver injury in COVID-19 patients is a comprehensive effect mediated by multiple factors, including liver damage directly caused by SARS-CoV-2, drug-induced liver damage, hypoxia reperfusion dysfunction, immune stress and inflammatory factor storms. Patients with chronic liver disease (especially alcohol-related liver disease, nonalcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma) are at increased risk of severe disease and death after infection with SARS-CoV-2, and COVID-19 aggravates liver damage in patients with chronic liver disease. This article reviews the latest SARS-CoV-2 reports, focusing on the liver damage caused by COVID-19 and the underlying mechanism, and expounds on the risk, treatment and vaccine safety of SARS-CoV-2 in patients with chronic liver disease and liver transplantation.


Asunto(s)
COVID-19 , Hepatopatías , COVID-19/complicaciones , Humanos , Cirrosis Hepática , Hepatopatías/etiología , Hepatopatías/terapia , SARS-CoV-2
17.
Stem Cell Res Ther ; 13(1): 159, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410439

RESUMEN

BACKGROUND: Various methods have been developed to generate hepatic cells from human pluripotent stem cells (hPSCs) that rely on the combined use of multiple expensive growth factors, limiting industrial-scale production and widespread applications. Small molecules offer an attractive alternative to growth factors for producing hepatic cells since they are more economical and relatively stable. METHODS: We dissect small-molecule combinations and identify the ideal cocktails to achieve an optimally efficient and cost-effective strategy for hepatic cells differentiation, expansion, and maturation. RESULTS: We demonstrated that small-molecule cocktail CIP (including CHIR99021, IDE1, and PD0332991) efficiently induced definitive endoderm (DE) formation via increased endogenous TGF-ß/Nodal signaling. Furthermore, we identified that combining Vitamin C, Dihexa, and Forskolin (VDF) could substitute growth factors to induce hepatic specification. The obtained hepatoblasts (HBs) could subsequently expand and mature into functional hepatocyte-like cells (HLCs) by the established chemical formulas. Thus, we established a stepwise strategy with complete small molecules for efficiently producing scalable HBs and functionally matured HLCs. The small-molecule-derived HLCs displayed typical functional characteristics as mature hepatocytes in vitro and repopulating injured liver in vivo. CONCLUSION: Our current small-molecule-based hepatic generation protocol presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery using.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado , Células Madre Pluripotentes/metabolismo
18.
Cells ; 11(15)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954231

RESUMEN

Multiple endocrine neoplasia type 1 (MEN1) is an inherited disease caused by mutations in the MEN1 gene encoding a nuclear protein menin. Among those different endocrine tumors of MEN1, the pancreatic neuroendocrine tumors (PNETs) are life-threatening and frequently implicated. Since there are uncertainties in genotype and phenotype relationship and there are species differences between humans and mice, it is worth it to replenish the mice model with human cell resources. Here, we tested whether the patient-origin induced pluripotent stem cell (iPSC) lines could phenocopy some defects of MEN1. In vitro ß-cell differentiation revealed that the percentage of insulin-positive cells and insulin secretion were increased by at least two-fold in MEN1-iPSC derived cells, which was mainly resulted from significantly higher proliferative activities in the pancreatic progenitor stage (Day 7-13). This scenario was paralleled with increased expressions of prohormone convertase1/3 (PC1/3), glucagon-like peptide-1 (GLP-1), GLP-1R, and factors in the phosphatidylinositol 3-kinase (PI3K)/AKT signal pathway, and the GLP-1R was mainly expressed in ß-like cells. Blockages of either GLP-1R or PI3K significantly reduced the percentages of insulin-positive cells and hypersecretion of insulin in MEN1-derived cells. Furthermore, in transplantation of different stages of MEN1-derived cells into immune-deficient mice, only those ß-like cells produced tumors that mimicked the features of the PNETs from the original patient. To the best of our knowledge, this was the first case using patient-origin iPSCs modeling most phenotypes of MEN1, and the results suggested that GLP-1R may be a potential therapeutic target for MEN1-related hyperinsulinemia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasia Endocrina Múltiple Tipo 1 , Tumores Neuroectodérmicos Primitivos , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas
19.
Life Sci ; 284: 119941, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508761

RESUMEN

Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.


Asunto(s)
Hígado/metabolismo , Hígado/fisiopatología , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Animales , Hepatocitos/metabolismo , Humanos , Hepatopatías/metabolismo , Procesamiento Proteico-Postraduccional
20.
Stem Cell Res ; 53: 102197, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33771478

RESUMEN

Excessive prostaglandin E2 (PGE2) is the key pathological basis for COVID-19 and a Celebrex treatment of hospitalized COVID-19 patients with comorbidities led to 100% discharged rate and zero death (Hong et al. 2020). It is also suggested that SARS-CoV-2 infected multiple organs and the SARS-CoV nucleocapsid (N) protein transcriptionally drives the expression of the host COX-2 gene. In order to test whether SARS-CoV-2 N protein activates COX-2 transcription in multiple human relevant cell types, an expression inducible human embryonic stem cell line was generated by piggyBac transposon system. This cell line maintained its pluripotency, differentiation potentials, normal morphology and karyotype.


Asunto(s)
COVID-19 , Células Madre Embrionarias Humanas , Línea Celular , Humanos , Proteínas de la Nucleocápside/genética , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA