Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640894

RESUMEN

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN Helicasas/genética , Reparación del ADN por Unión de Extremidades
2.
J Biol Chem ; : 107461, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876299

RESUMEN

Theta-mediated end-joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend single-stranded DNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both single-stranded DNA and RNA substrates by unimolecular stem loop synthesis initiated by only two 3' terminal base-pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem loop synthesis competes with bimolecular end-joining, even when a longer terminal microhomology for end-joining is available. Both reactions are partially suppressed by the ssDNA binding protein RPA. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare amongst human DNA polymerases but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.

3.
J Eur Acad Dermatol Venereol ; 38(3): 549-556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100231

RESUMEN

BACKGROUND: Data on nail psoriasis (PsO) in China are scarce. OBJECTIVES: To provide nail PsO-related data regarding epidemiologic characteristics, manifestations, fungal infections, arthritic complaints and treatments that may facilitate improved patient management globally. METHODS: From August 2021 to August 2022, patients with nail PsO were enrolled in a prospective multicentre observational study at 25 hospitals in China. We collected and analysed data concerning nail PsO demography, clinical signs, fungal detection, arthritic symptoms and treatment. RESULTS: A total of 817 patients with nail PsO were involved, with a mean body mass index of 24.13 ± 2.93. In addition, 71.41% of the patients were male. The Nail PsO Severity Index score was weakly positively correlated with body surface area. The percentage of nail involvement was 95.29% for fingernails and 57.18% for toenails, with pitting (67.11%) and subungual hyperkeratosis (60.40%) being the most prevalent manifestations, respectively. Toenails showed a significantly higher frequency of nailfold scales, subungual hyperkeratosis and nail plate crumbling and a lower frequency of splinter haemorrhages, pitting and erythema of the lunula. A total of 13.26% of the PsO patients had onychomycosis, and 77.08% were observed in the toenails. Articular symptoms were reported by 12.17% of the patients, with the peripheral type being predominant. Significant associations between articular symptoms and nailfold swelling, subungual hyperkeratosis, nailfold scales, onycholysis and longitudinal ridges were found. Only 2.30% (20 out of 871) of patients with nail PsO received treatment. The most frequently employed therapy for cutaneous PsO with nail involvement was biologic therapy (n = 366). CONCLUSIONS: PsO showed distinct manifestations in the toenails and fingernails. Additionally, toenail PsO combined with onychomycosis requires special attention. Articular symptoms in psoriatic patients are associated with specific nail changes. It is important to research and advocate for more potent treatments for nail PsO.


Asunto(s)
Enfermedades de la Uña , Onicomicosis , Psoriasis , Humanos , Masculino , Femenino , Onicomicosis/diagnóstico , Estudios Prospectivos , Enfermedades de la Uña/diagnóstico , Psoriasis/epidemiología , Psoriasis/terapia , Psoriasis/complicaciones , China/epidemiología
4.
J Environ Manage ; 356: 120740, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520853

RESUMEN

Stomatal conductance (gs) and compensatory water uptake (CWU) are crucial processes in land surface models, as they directly influence the exchange of carbon and water fluxes between terrestrial ecosystems and the atmosphere. In this study, we integrated a new stomatal scheme derived from optimal stomatal theory (Medlyn's gs model), and an empirical CWU scheme into the Common Land Model (CoLM). Assessing the impacts on modeling gross primary productivity (GPP) and latent flux (LE) through observations obtained from eddy covariance (EC) measurements at three forest sites in China. Our results show that replacing the Ball-Berry's gs model (termed BB) with Medlyn's gs model (termed MED) did not bring about significant changes (had neutral impacts) in the performance of CoLM simulations at three forest sites. Considering the climate factors of annual mean precipitation to optimize key fitting parameters in gs exhibited improvement in model simulations. The average coefficient of determination (R2) achieved to 0.65 for GPP and LE at three sites, and the normalized root mean squared error (NRMSE) decreased from 0.83 to 0.77 at those sites. Besides, incorporating CWU into the model improved its performance. The R2 increased to 0.84 and RMSE decreased to 4.84 µmol m-2 s-1 for GPP, and the R2 increased to 0.62 and RMSE decreased to 55.64 W m-2 for LE. Therefore, modifying the model process of both contributed more to enhancing the model simulations than relying solely on one of these functions. Our study highlights that the response of plant functional types (PFTs) to water stress can be effectively represented in gs models when coupled with biochemical capacity to quantify carbon and water fluxes in forest ecosystems or other ecosystems.


Asunto(s)
Carbono , Ecosistema , Bosques , Plantas , China , Ciclo del Carbono
5.
Pharm Biol ; 62(1): 472-479, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38769628

RESUMEN

CONTEXT: The Xihuang pill (XHP) is a traditional Chinese medicine formulation that has been historically used in the prevention and treatment of proliferative breast diseases. However, there is a lack of guidelines that offer recommendations for its clinical use. OBJECTIVE: The task force from the Chinese Guangdong Pharmaceutical Association aims to develop evidence-based guidelines for XHP to prevent and treat proliferative breast diseases. METHODS: We searched six Chinese and English electronic databases, including the China National Knowledge Infrastructure, the Chinese Scientific Journal Database, the Wanfang Medical Database, PubMed, and Embase, up to November 1, 2022. Publications (case reports, clinical observation, clinical trials, reviews) on using XHP to treat proliferative breast diseases were manually searched. The search terms were Xihuang pill, hyperplasia of the mammary gland, breast lump, and mastalgia. The writing team developed recommendations based on the best available evidence. RESULTS: Treatment should be customized based on syndrome identification. We recommend using XHP for the prevention and treatment of breast hyperplasia disease when a patient presents the following syndromes: concurrent blood stasis syndrome, concurrent phlegm-stasis syndrome, and concurrent liver fire syndrome. Safety indicators, including blood analysis and liver and kidney function monitoring, should be performed regularly during treatment. CONCLUSIONS: Current clinical evidence suggests that XHP can be used as a standalone treatment or in conjunction with other medications to prevent and manage breast hyperplasia diseases. More randomized controlled studies are warranted to establish high-quality evidence of its use.


Asunto(s)
Enfermedades de la Mama , Medicamentos Herbarios Chinos , Hiperplasia , Medicina Tradicional China , Humanos , Femenino , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/administración & dosificación , Enfermedades de la Mama/tratamiento farmacológico , Medicina Tradicional China/métodos , China
6.
BMC Genomics ; 24(1): 774, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097926

RESUMEN

BACKGROUND: Atherosclerosis (AS) is a critical pathological event during the progression of cardiovascular diseases. It exhibits fibrofatty lesions on the arterial wall and lacks effective treatment. N6-methyladenosine (m6A) is the most common modification of eukaryotic RNA and plays an important role in regulating the development and progression of cardiovascular diseases. However, the role of m6A modification in AS remains largely unknown. Therefore, in this study, we explored the transcriptome distribution of m6A modification in AS and its potential mechanism. METHODS: Methylation Quantification Kit was used to detect the global m6A levels in the aorta of AS mice. Western blot was used to analyze the protein level of methyltransferases. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were used to obtain the first transcriptome range analysis of the m6A methylene map in the aorta of AS mice, followed by bioinformatics analysis. qRT-PCR and MeRIP-qRT-PCR were used to measure the mRNA and m6A levels in target genes. RESULTS: The global m6A and protein levels of methyltransferase METTL3 were significantly increased in the aorta of AS mice. However, the protein level of demethylase ALKBH5 was significantly decreased. Through MeRIP-seq, we obtained m6A methylation maps in AS and control mice. In total, 26,918 m6A peaks associated with 13,744 genes were detected in AS group, whereas 26,157 m6A peaks associated with 13,283 genes were detected in the control group. Peaks mainly appeared in the coding sequence (CDS) regions close to the stop codon with the RRACH motif. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in AS-relevant pathways. Interestingly, a negative correlation between m6A methylation abundance and gene expression level was found through the integrated analysis of MeRIP-seq and RNA-seq data. Among the m6A-modified genes, a hypo-methylated but up-regulated (hypo-up) gene Fabp5 may be a potential biomarker of AS. CONCLUSIONS: Our study provides transcriptome-wide m6A methylation for the first time to determine the association between m6A modification and AS progression. Our study lays a foundation for further exploring the pathogenesis of AS and provides a new direction for the treatment of AS.


Asunto(s)
Enfermedades Cardiovasculares , Transcriptoma , Ratones , Animales , Metilación , ARN/metabolismo
7.
Am J Transplant ; 23(1): 11-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695612

RESUMEN

Ischemia/reperfusion injury (IRI) is prone to occur after kidney transplantation, leading to delayed graft function (DGF). MicroRNAs play a crucial role in the pathogenesis of ischemia/reperfusion-induced acute kidney injury, and miR-20a-5p was found to be the most significantly upregulated gene in a DGF patient cohort. However, the roles of microRNAs in transplanted kidneys remain largely unknown. In this study, we found that miR-20a-5p was upregulated in the kidneys of acute kidney injury mice and in patients with DGF. We identified early growth response-1 as a critical upstream target and verified the binding of early growth response-1 to a predicted sequence in the promoter region of the miR-20a-5p gene. Functionally, the miR-20a-5p mimic attenuated IRI and postischemic renal fibrosis, whereas the miR-20a-5p inhibitor delivery aggravated IRI and fibrosis. Importantly, delivery of the miR-20a-5p mimic or inhibitor in the donor kidneys attenuated or aggravated renal loss and structural damage in cold storage transplantation injury. Furthermore, our study identified miR-20a-5p as a negative regulator of acyl-CoA synthetase long-chain family member 4 (ACSL4) by targeting the 3' untranslated region of ACSL4 mRNA, thereby inhibiting ACSL4-dependent ferroptosis. Our results suggest a potential therapeutic application of miR-20a-5p in kidney transplantation through the inhibition of ACSL4-dependent ferroptosis.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , MicroARNs , Daño por Reperfusión , Animales , Ratones , MicroARNs/genética , Riñón/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/genética , Isquemia , Coenzima A Ligasas/genética
8.
Biochem Biophys Res Commun ; 638: 43-50, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436341

RESUMEN

Stomatal movements allow the uptake of CO2 for photosynthesis and water loss through transpiration, therefore play a crucial role in determining water use efficiency. Both red and blue lights induce stomatal opening, and the stomatal apertures under light are finetuned by both positive and negative regulators in guard cells. However, the molecular mechanisms for precisely adjusting stomatal apertures under light have not been completely understood. Here, we provided evidence supporting that Arabidopsis thaliana mitogen-activated protein kinase 11 (MPK11) plays a negative role in red light-induced stomatal opening. First, MPK11 was found to be highly expressed in guard cells, and MPK11-GFP signals were detected in both nuclear and cytoplasm of guard cells. The transcript levels of MPK11 in guard cells were upregulated by white light, and the stomata of mpk11 opened wider than that of wild type under white light. Consistent with the larger stomatal aperture, mpk11 mutant exhibited higher stomatal conductance and CO2 assimilation rate under white light. The transcript levels of the genes responsible for osmolytes increases were higher in guard cells of mpk11 than that of wild type, which may contribute to the larger stomatal aperture of mpk11 under white light. Furthermore, MPK11 transcript levels in guard cells were upregulated by red light, and mpk11 mutant showed a larger stomatal aperture under red light. Taken together, these results demonstrate that red light-upregulated MPK11 plays a negative role in stomatal opening, which finetuning the stomatal opening apertures and preventing excessive water loss by transpiration under light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Estomas de Plantas/metabolismo , Luz , Agua/metabolismo
9.
Small ; 19(40): e2301748, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37282762

RESUMEN

Extracellular vesicles (EVs) are lipid bilayer nanovesicles released from living or apoptotic cells that can transport DNA, RNA, protein, and lipid cargo. EVs play critical roles in cell-cell communication and tissue homeostasis, and have numerous therapeutic uses including serving as carriers for nanodrug delivery. There are multiple ways to load EVs with nanodrugs, such as electroporation, extrusion, and ultrasound. However, these approaches may have limited drug-loading rates, poor EV membrane stability, and high cost for large-scale production. Here, it is shown that apoptotic mesenchymal stem cells (MSCs) can encapsulate exogenously added nanoparticles into apoptotic vesicles (apoVs) with a high loading efficiency. When nano-bortezomib is incorporated into apoVs in culture-expanded apoptotic MSCs, nano-bortezomib-apoVs show a synergistic combination effect of bortezomib and apoVs to ameliorate multiple myeloma (MM) in a mouse model, along with significantly reduced side effects of nano-bortezomib. Moreover, it is shown that Rab7 regulates the nanoparticle encapsulation efficiency in apoptotic MSCs and that activation of Rab7 can increase nanoparticle-apoV production. In this study, a previously unknown mechanism to naturally synthesize nano-bortezomib-apoVs to improve MM therapy is revealed.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Mieloma Múltiple , Animales , Ratones , Bortezomib/farmacología , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Vesículas Extracelulares/metabolismo , Comunicación Celular
10.
Fungal Genet Biol ; 167: 103813, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37211343

RESUMEN

Aspergillus oryzae is an important filamentous fungus widely used for the industrial production of fermented foods and secondary metabolites. The clarifying of the mechanism of the growth and secondary metabolites in A. oryzae is important for its industrial production and utilization. Here, the C2H2-type zinc-finger protein AoKap5 was characterized to be involved in the growth and kojic acid production in A. oryzae. The Aokap5-disrupted mutants were constructed by the CRISPR/Cas9 system, which displayed increased colony growth but decreased conidial formation. Deletion of Aokap5 enhanced the tolerance to cell-wall and oxidative but not osmotic stress. The transcriptional activation assay revealed that AoKap5 itself didn't have transcriptional activation activity. Disruption of Aokap5 resulted in the reduced production of kojic acid, coupled with the reduced expression of the kojic acid synthesis genes kojA and kojT. Meanwhile, overexpression of kojT could rescue the decreased production of kojic acid in Aokap5-deletion strain, indicating that Aokap5 serves upstream of kojT. Furthermore, the yeast one-hybrid assay demonstrated that AoKap5 could directly bind to the kojT promoter. These findings suggest that AoKap5 regulates kojic acid production through binding to the kojT promoter. This study provides an insight into the role of zinc finger protein in the growth and kojic acid biosynthesis of A. oryzae.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pironas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinc/metabolismo
11.
Appl Environ Microbiol ; 89(10): e0090923, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702504

RESUMEN

Kojic acid (KA) is a valuable secondary metabolite that is regulated by zinc finger proteins in Aspergillus oryzae. However, only two such proteins have been characterized to function in kojic acid production of A. oryzae to date. In this study, we identified a novel zinc finger protein, AoZFA, required for kojic acid biosynthesis in A. oryzae. Our results showed that disruption of AozfA led to increased expression of kojA and kojR involved in kojic acid synthesis, resulting in enhanced kojic acid production, while overexpression of AozfA had the opposite effect. Furthermore, deletion of kojR in the AozfA disruption strain abolished kojic acid production, whereas overexpression of kojR enhanced it, indicating that AoZFA regulates kojic acid production by affecting kojR. Transcriptional activation assay revealed that AoZFA is a transcriptional activator. Interestingly, when kojR was overexpressed in the AozfA overexpression strain, the production of kojic acid failed to be rescued, suggesting that AozfA plays a distinct role from kojR in kojic acid biosynthesis. Moreover, we found that AozfA was highly induced by zinc during early growth stages, and its overexpression inhibited the growth promoted by zinc, whereas its deletion had no effect, suggesting that AoZFA is non-essential but has a role in the response of A. oryzae to zinc. Overall, these findings provide new insights into the roles of zinc finger proteins in the growth and kojic acid production of A. oryzae.IMPORTANCEKojic acid (KA) is an economically valuable secondary metabolite produced by Aspergillus oryzae due to its vast biological activities. Genetic modification of A. oryzae has emerged as an efficient strategy for enhancing kojic acid production, which is dependent on the mining of genes involved in kojic acid synthesis. In this study, we have characterized a novel zinc-finger protein, AoZFA, as a negative regulator of kojic acid production by affecting kojR. AozfA is an excellent target for improving kojic acid production without any effects on the growth of A. oryzae. Furthermore, the simultaneous modification of AozfA and kojR exerts a more significant promotional effect on kojic acid production than the modification of single genes. This study provides new insights for the regulatory mechanism of zinc finger proteins in the growth and kojic acid production of A. oryzae.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Pironas/metabolismo , Zinc/metabolismo , Dedos de Zinc
12.
Plant Cell Environ ; 46(11): 3323-3336, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37493364

RESUMEN

Red light induces stomatal opening by affecting photosynthesis, metabolism and triggering signal transductions in guard cells. Phytochrome B (phyB) plays a positive role in mediating red light-induced stomatal opening. However, phyB-mediated red light guard cell signalling is poorly understood. Here, we found that phyB-mediated sequential phosphorylation of mitogen-activated protein kinase kinase 2 (MAPKK2, MKK2) and MPK2 in guard cells is essential for red light-induced stomatal opening. Mutations in MKK2 and MPK2 led to reduced stomatal opening in response to white light, and these phenotypes could be observed under red light, not blue light. MKK2 interacted with MPK2 in vitro and in plants. MPK2 was directly phosphorylated by MKK2 in vitro. Red light triggered the phosphorylation of MKK2 in guard cells, and MKK2 phosphorylation was greatly reduced in phyB mutant. Simultaneously, red light-stimulated MPK2 phosphorylation in guard cells was inhibited in mkk2 mutant. Furthermore, mkk2 and mpk2 mutants exhibit significantly smaller stomatal apertures than that of wild type during the stomatal opening stage in the diurnal stomatal movements. Our results indicate that red light-promoted phyB-dependent phosphorylation of MKK2-MPK2 cascade in guard cells is essential for stomatal opening, which contributes to the fine-tuning of stomatal opening apertures under light.


Asunto(s)
Proteínas de Arabidopsis , Estomas de Plantas , Fosforilación , Estomas de Plantas/fisiología , Luz , Fotosíntesis , Fitocromo B/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
13.
Exp Dermatol ; 32(11): 1971-1981, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37743533

RESUMEN

Psoriasis is a frequent chronic, recurrent and immune-mediated inflammatory skin disease, whose pathogenesis remains unclear at present. The role of antiviral protein in the pathogenesis of psoriasis is the focus of current research. Interferon stimulated gene 15 (ISG15) is an important antiviral protein. In this study, the expression of ISG15 saw a significant increase through the immunohistochemical detection of imiquimod (IMQ)-induced mice. In the psoriasis cell model, a remarkable increase also occurred in the expression of ISG15. In this study, it was found that the cell cycle was blocked in G1/S conversion, and a reduction took place in the proliferation of keratinocytes and the expression of a cell cycle-related protein-cyclin D1 after the knockout of ISG15 in the psoriasis cell model. After that, messenger ribonucleic acid (mRNA) sequencing and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) analysis indicated its close association with the hypoxia inducible factor-1α (HIF-1α) signalling pathway. Western blot showed a decrease in the expression of HIF-1α and vascular endothelial growth factor C (VEGFC) after the knockout of the ISG15 gene. The rescue experiment verified that ISG15 promotes the proliferation of keratinocytes by regulating the HIF-1α signalling pathway. It was concluded that psoriasis cells and mouse models witnessed the increased expression of ISG15. In psoriasis, knocking out ISG15 inhibits the proliferation of keratinocytes and blocks the cell cycle. Besides, ISG15 promotes the proliferation of keratinocytes through the HIF-1α signalling pathway.


Asunto(s)
Interferones , Psoriasis , Animales , Ratones , Antivirales , Proliferación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interferones/metabolismo , Queratinocitos/metabolismo , Psoriasis/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 581-590, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37654138

RESUMEN

Objective To investigate the effects of Weidiao-3(WD-3)Mixture on the clinical efficacy of immunotherapy for advanced gastric cancer and the intestinal flora.Methods Fifty-one patients with advanced gastric cancer treated in Wuxi Traditional Chinese Medicine Hospital from January 2020 to December 2021 were randomized into a WD-3 group(immunotherapy + WD-3 Mixture,one dose per day)(n=25)and a gastric cancer(GC) group(only immunotherapy)(n=26)according to the admission time.Ten healthy volunteers were included as the healthy control group.The Karnofsky score and the Quality of Life Questionnare-Core score were evaluated before and after treatment,and the clinical efficacy was compared after treatment.After treatment,the stool samples were collected for 16SrRNA gene high-throughput sequencing and targeted metabolomics.The α and ß diversity and structure of the intestinal flora and the content of short-chain fatty acids were compared between groups.Results The quality of life in both groups improved after treatment and was better in the WD-3 group than in the GC group(P=0.035).The dry mouth(P=0.038)and altered taste(P=0.008)were mitigated in the WD-3 group after treatment,and the reflux(P=0.001)and dry mouth(P=0.022)were mitigated in the GC group after treatment.After treatment,the WD-3 group outperformed the GC group in terms of dysphagia(P=0.047)and dry mouth(P=0.045).The WD-3 group was superior to the GC group in terms of objective remission rate and disease control rate,with prolonged median progression-free survival and median overall survival(P=0.039,P=0.043).The α and ß diversity indexes of the intestinal flora showed no significant differences between WD-3 and GC groups(all P>0.05).At the phylum level,WD-3 and GC groups had lower relative abundance of Firmicutes(P=0.038,P=0.042)and higher relative abundance of Proteobacteria(P=0.016,P=0.015)than the healthy control group.The relative abundance of Actinomycetes in the GC group was lower than that in the healthy control group(P=0.035)and the WD-3 group(P=0.046).At the genus level,the GC group had lower relative abundance of Bifidobacteria and Coprococcus than the healthy control group and the WD-3 group(all P<0.001).LEfSe revealed the differences in the relative abundance of 6 intestinal bacterial taxa between the WD-3 group and the GC group.At the genus level,Saccharopolyspora had higher relative abundance in the WD-3 group than in the healthy control group and only existed in the WD-3 group.The content of isobutyric acid and isovaleric acid in the WD-3 group was higher than that in the healthy control group(P=0.037,P=0.004).Conclusion WD-3 Mixture may increase the relative abundance of Bifidobacteria and Coprococcus and the content of isobutyric acid and isovaleric acid to alter the intestinal microecology,thereby improving the efficacy of immunotherapy for gastric cancer.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Isobutiratos , Calidad de Vida , Neoplasias Gástricas/terapia , Inmunoterapia , Resultado del Tratamiento
15.
Angew Chem Int Ed Engl ; 62(32): e202306146, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302984

RESUMEN

The α-methylene-γ-butyrolactone motif is a widely encountered unit in many natural products and pharmaceutical compounds. Herein, a practical and efficient synthesis of α-methylene-γ-butyrolactones from readily available allylic boronates and benzaldehyde derivatives was developed with chiral N,N'-dioxide/AlIII complex as the catalyst. The key success of this transformation was the kinetic resolution of allylboration intermediate via asymmetric lactonization. This protocol enabled to assemble all of four stereoisomers from the same set of starting materials upon variable lactonization. Taking advantage of the current method as the key step, catalytic asymmetric total synthesis of eupomatilones 2, 5, and 6 was accomplished. Control experiments were carried out to probe into the tandem reaction as well as the origin of stereoselectivities.

16.
Mol Biol Rep ; 49(4): 2745-2754, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35034288

RESUMEN

BACKGROUND: Aspergillus oryzae is an industrially important filamentous fungus for the production of fermentative food, commercial enzyme and valuable secondary metabolites. Although the whole genome of A. oryzae has been sequenced in 2005, there is currently not enough research on functional genes that affect the growth and secondary metabolites of A. oryzae. This study aimed to identify and characterize functional genes involved in the growth and secondary metabolites of A. oryzae. METHODS AND RESULTS: Our previous work on the developmental transcriptome of A. oryzae found that an uncharacterized gene Aokap2 was repressed during the development of A. oryzae. In this study, the gene expression pattern was verified by qRT-PCR. Phylogenetic analysis revealed that AoKAP2 has the species specificity of Aspergillus. Furthermore, Aokap2 was overexpressed using the A. oryzae amyB promoter and overexpression of Aokap2 caused the inhibition in mycelium growth, conidia formation and biomass. Additionally, overexpression of Aokap2 increased the production of kojic acid. In accordance with the enhanced kojic acid, the overexpression of Aokap2 led to elevated transcription levels of the key kojic acid synthesis gene kojA and the global transcriptional regulator gene of secondary metabolism laeA. Moreover, the expression of Aokap2 was down-regulated significantly in the laeA mutant. Meanwhile, overexpression of Aokap2 in the kojA disrupted strain resulted in a ΔkojA strain-like phenotype with significant inhibition in kojic acid production. CONCLUSION: Taken together, these data suggest that a novel gene Aokap2 is involved in the growth and overexpression of Aokap2 increased kojic acid production through affecting the expression of laeA and kojA. The identification of Aokap2 provides a new target for genetic modification of the growth and the production of kojic acid in A. oryzae.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Pironas/metabolismo
17.
Bioorg Chem ; 127: 105994, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35792314

RESUMEN

Three series of quinazoline derivatives (7a-j, 8a-o, 9a-l) were designed and synthesized as EGFRL858R/T790M inhibitors. Series 7a-j and 8a-o are urea and thiourea derivatives while category 9a-l contain the Michael receptor active warhead. Most of the compounds exhibited excellent anti-proliferative activity in vitro against several cancer cell lines, including non-small cell lung cancer (NSCLC) cell lines A549 and H1975, among which 14 compounds had strong antiproliferative activity against A549 and H1975 cancer cells. What's more, they also showed moderate to excellent kinase inhibitory activity against EGFRWT and EGFRL858R/T790M. 8o exhibited the best kinase inhibitory activity with IC50 values of 0.8, 2.7 nM against EGFRWT and EGFRL858R/T790M, respectively. Moreover, AO single staining and Annexin V-FITC/PI staining results also indicated that both 8o and 9b significantly induced apoptosis in A549 cells. 8o arrested the cell cycle at S phase and 9b arrested the cell cycle at G1 phase.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Estructura Molecular , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Relación Estructura-Actividad
18.
Environ Res ; 205: 112434, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856169

RESUMEN

Photocatalytic removal of NH3-N is expected to be an alternative to the biological method that accompanied with high energy consumption and secondary pollution. However, NH3-N is always oxidized into nitrate and nitrite during the photocatalytic processes, which also need to be removed from the water. Herein, the g-C3N4/rGO/TiO2 Z-scheme photocatalytic system was prepared and used for the NH3-N removal. The results showed the rate constant of NH3-N conversion on it was 0.705 h-1, 1.7 times as high as that on g-C3N4/TiO2, and most of the NH3-N were converted into gaseous products. And the experiment result indicated NH3-N and NO3- in water could enhance the removal of each other. According to the results, the main reaction mechanism is speculated as: ·OH radicals and ·O2- radicals were generated on TiO2 and oxidized the NH3-N into NO3-, and the latter was reduced into non-toxic N2 on the conduction band of g-C3N4. Finally, NH3-N removal performance for actual coking wastewater was investigated, and the stability of the photocatalyst was tested. This work provides some theoretical basis for the two-step degradation of pollutants by Z-scheme photocatalytic system.


Asunto(s)
Amoníaco , Agua , Catálisis , Desnitrificación , Grafito , Nitrificación , Titanio
19.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362008

RESUMEN

Herein, Zn3In2S6 photocatalyst with (110) exposed facet was prepared by low temperature solvothermal method. On this basis, a highly efficient binary Zn3In2S6/g-C3N4 was obtained by low temperature solvothermal method and applied to the degradation of tetracycline (TC). The samples of the preparation were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV-vis diffuse reflection spectroscopy, and photoluminescence spectroscopy. Furthermore, the degradation performance of photocatalysts on TC was investigated under different experimental conditions. Finally, the mechanism of Zn3In2S6/g-C3N4 composite material degrading TC is discussed. The results show that Zn3In2S6 and Zn3In2S6/g-C3N4 photocatalysts with excellent performance could be successfully prepared at lower temperature. The Zn3In2S6/g-C3N4 heterojunction photocatalyst could significantly improve the photocatalytic activity compared with g-C3N4. After 150 min of illumination, the efficiency of 80%Zn3In2S6/g-C3N4 to degrade TC was 1.35 times that of g-C3N4. The improvement of photocatalytic activity was due to the formation of Zn3In2S6/g-C3N4 heterojunction, which promoted the transfer of photogenerated electron-holes. The cycle experiment test confirmed that Zn3In2S6/g-C3N4 composite material had excellent stability. The free radical capture experiment showed that ·O2- was the primary active material. This study provides a new strategy for the preparation of photocatalysts with excellent performance at low temperature.


Asunto(s)
Luz , Tetraciclina , Catálisis , Temperatura , Antibacterianos , Zinc
20.
World J Microbiol Biotechnol ; 38(10): 175, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35922587

RESUMEN

The kojic acid gene cluster of Aspergillus oryzae plays a key role in kojic acid synthesis. Although the kojic acid gene cluster has been found in 2010, there is little information on the function of the genes located near the kojic acid gene cluster of A. oryzae and whether these genes affect the kojic acid gene cluster containing kojA, kojR and kojT. Here, Aokap6 near the kojic acid gene cluster of A. oryzae was identified and characterized. The Aokap6 disrupted mutants were constructed by the CRISPR/Cas9 system, which exhibited increased mycelium growth and conidial formation. Disruption of Aokap6 enhanced the tolerance to cell wall, oxidative and heat stress but not osmotic stress. Deletion of Aokap6 repressed kojic acid production, together with the reduced expression of kojA, kojR and kojT. Meanwhile, knockout of kojA, kojR and kojT led to the declined expression of Aokap6, indicating that Aokap6 is required for kojic acid production in coordination with kojA, kojR and kojT. Furthermore, overexpression of kojA, kojR and kojT had no effects on the transcript level of Aokap6, and overexpression of kojA in Aokap6 deletion strain could rescue the reduced yield of kojic acid, suggesting that Aokap6 is involved in kojic acid synthesis acting upstream of kojA. These findings provide new insight for the further understanding of kojic acid gene cluster and kojic acid production in A. oryzae.


Asunto(s)
Aspergillus oryzae , Proteínas Fúngicas/metabolismo , Familia de Multigenes , Pironas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA