RESUMEN
The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.
Asunto(s)
Hongos , Microbioma Gastrointestinal , Micobioma , Animales , Humanos , Masculino , Ratones , Heces/microbiología , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Genoma Fúngico/genética , Genómica , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/genética , Metagenoma , Filogenia , Femenino , Adulto , Persona de Mediana EdadRESUMEN
Histone chaperones participate in the biogenesis, transportation, and deposition of histones. They contribute to processes impacted by nucleosomes including DNA replication, transcription, and epigenetic inheritance. In this issue, Carraro et al.1 reveal an interconnected chaperone network and a surprising function of histone chaperone DAXX in de novo deposition of H3.3K9me3.
Asunto(s)
Chaperonas de Histonas , Histonas , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Chaperonas Moleculares/genética , Replicación del ADNRESUMEN
How cancer-associated chromatin abnormalities shape tumor-immune interaction remains incompletely understood. Recent studies have linked DNA hypomethylation and de-repression of retrotransposons to anti-tumor immunity through the induction of interferon response. Here, we report that inactivation of the histone H3K36 methyltransferase NSD1, which is frequently found in squamous cell carcinomas (SCCs) and induces DNA hypomethylation, unexpectedly results in diminished tumor immune infiltration. In syngeneic and genetically engineered mouse models of head and neck SCCs, NSD1-deficient tumors exhibit immune exclusion and reduced interferon response despite high retrotransposon expression. Mechanistically, NSD1 loss results in silencing of innate immunity genes, including the type III interferon receptor IFNLR1, through depletion of H3K36 di-methylation (H3K36me2) and gain of H3K27 tri-methylation (H3K27me3). Inhibition of EZH2 restores immune infiltration and impairs the growth of Nsd1-mutant tumors. Thus, our work uncovers a druggable chromatin cross talk that regulates the viral mimicry response and enables immune evasion of DNA hypomethylated tumors.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Histona Metiltransferasas , Escape del Tumor , Animales , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Cromatina , Metilación de ADN , Neoplasias de Cabeza y Cuello/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Interferones/genética , Proteínas Nucleares/metabolismo , Receptores de Interferón/genética , Retroelementos , Escape del Tumor/genéticaRESUMEN
In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.
Asunto(s)
Silenciador del Gen , Histonas , Elementos de Nucleótido Esparcido Largo , Lisina , Fase S , Humanos , Replicación del ADN , Histonas/química , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Lisina/metabolismo , MetilaciónRESUMEN
Soft magnetic materials (SMMs) serve in electrical applications and sustainable energy supply, allowing magnetic flux variation in response to changes in applied magnetic field, at low energy loss1. The electrification of transport, households and manufacturing leads to an increase in energy consumption owing to hysteresis losses2. Therefore, minimizing coercivity, which scales these losses, is crucial3. Yet meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads; that is, the alloys need high strength and ductility4. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteresis losses5. Here we introduce an approach to overcome this dilemma. We have designed a Fe-Co-Ni-Ta-Al multicomponent alloy (MCA) with ferromagnetic matrix and paramagnetic coherent nanoparticles (about 91 nm in size and around 55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1,336 MPa at 54% tensile elongation, extremely low coercivity of 78 A m-1 (less than 1 Oe), moderate saturation magnetization of 100 A m2 kg-1 and high electrical resistivity of 103 µΩ cm.
RESUMEN
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Asunto(s)
Adenina , Adenosina , Adenosina/química , Adenosina/análogos & derivados , Adenina/química , Adenina/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Humanos , Estereoisomerismo , Estructura Molecular , Antivirales/química , Antivirales/síntesis químicaRESUMEN
BACKGROUND: Phosphatidylinositol 3-kinase (PI3K) inhibitors transformed management of various malignancies. This study preclinically characterized TQ-B3525 (dual PI3Kα/δ inhibitor) and assessed the recommended phase 2 dose (RP2D), safety, efficacy, and pharmacokinetics in relapsed or refractory (R/R) lymphoma or advanced solid tumors (STs). METHODS: Oral TQ-B3525 was given at eight dose levels on a 28-day cycle. Primary end points were dose-limiting toxicity (DLT), maximum tolerated dose (MTD), and safety. RESULTS: TQ-B3525 showed high selectivity and suppressed tumor growth. Between June 12, 2018, and November 18, 2020, 80 patients were enrolled (63 in dose-escalation cohort; 17 in dose-expansion cohort). Two DLTs occurred in two (two of 63, 3.2%) DLT-evaluable patients; MTD was not identified. TQ-B3525 at 20 mg once daily was selected as RP2D. Grade 3 or worse treatment-related adverse events mainly included hyperglycemia (16.3%), neutrophil count decreased (15.0%), and diarrhea (10.0%). Two (2.5%) treatment-related deaths were reported. Sixty patients with R/R lymphoma and 11 advanced STs demonstrated objective response rates of 68.3% and 9.1%, disease control rates of 91.7% and 54.6%, median progression-free survivals of 12.1 and 1.1 months; median overall survivals were not reached. CONCLUSION: TQ-B3525 exhibited rapid absorption and a nearly proportional increase in exposure. Acceptable safety and promising efficacy support further investigation of TQ-B3525 (20 mg once daily) for R/R lymphoma.
Asunto(s)
Dosis Máxima Tolerada , Neoplasias , Inhibidores de las Quinasa Fosfoinosítidos-3 , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/genética , Adulto Joven , Linfoma/tratamiento farmacológico , Linfoma/patología , Relación Dosis-Respuesta a Droga , Pueblos del Este de AsiaRESUMEN
Some 'watch and wait' (W&W) FL patients suffer from rapid progression in a short term. Herein, we sought to identify these patients and also develop a risk score to screen them at diagnosis. Between 2008 and 2022, a total of 411 FL patients managed by the W&W strategy from 16 cancer centres were retrospectively enrolled in this study, and their time to lymphoma treatment (TLT) and progression-free survival (PFS) were evaluated. Thirty-five percent of W&W FL patients experienced TLT within 24 months (TLT24) after diagnosis. Their 5-year PFS rate was significantly lower than those without treatment at 24 months (62.3% vs. 89.5%). In multivariable analysis, five factors were identified as independent predictors of TLT24: stages III-IV, ß2 microglobulin ≥3 mg/L, lymphocyte-to-monocyte ratio <3.8, bone marrow involvement and spleen enlargement (above umbilical line). Their AUCs for TLT24 were 0.76 (95% CI, 0.70-0.82) in the training cohort and 0.76 (95% CI, 0.67-0.85) in the validation cohort respectively. Risk groups were also associated with PFS (p < 0.001). In FL patients initially managed by W&W, TLT24 was associated with poor outcomes. This multivariable model helps screening for predicting TLT24, which may be useful to identify candidates for early interventional treatment.
RESUMEN
Sustained-release drug delivery formulations are preferable for treating various diseases as they enhance and prolong efficacy, minimize adverse effects, and avoid frequent dosing. However, these formulations are associated with poor patient compliance, require trained personnel for administration, and involve harsh manufacturing conditions that compromise drug stability. Here, a self-healing biodegradable porous microneedle (PMN) patch is reported for sustained drug delivery. The PMN patch is fabricated by a cryogenic micromoulding followed by phase separation, leading to formation of interconnected pores on the surface and internals of MNs. The pores with self-healing feature enable the PMNs to load hydrophilic drugs with different molecular weights in a mild and efficient manner. The healed PMNs can easily penetrate into the skin under press and detach from the supporting substrate under shear, thereby acting as implantable drug reservoirs for achieving sustained release of drugs for at least 40 days. One-time administration of desired therapeutics using the sustained-release healed PMNs resulted in stronger and longer-lasting efficacy in mitigating psoriasis and eliciting immunity compared to conventional methods with multiple administrations. The self-healing PMN patch for self-administrated and long-acting drug delivery can eventually improve medication adherence in prophylactic and therapeutic protocols that typically require frequent dosages.
Asunto(s)
Separación de Fases , Piel , Humanos , Preparaciones de Acción Retardada/farmacología , Administración Cutánea , Porosidad , Sistemas de Liberación de Medicamentos/métodos , AgujasRESUMEN
Host-guest catalyst provides new opportunities for targeted applications and the development of new strategies for preparing host-guest catalysts is highly desired. Herein, an in situ solvent-free approach is developed for implanting ZrW2O7(OH)2(H2O)2 nanorods (ZrW-NR) in nitro-functionalized UiO-66(Zr) (UiO-66(Zr)-NO2) with hierarchical porosity, and the encapsulation of ZrW-NR enables the as-prepared host-guest catalyst remarkably enhanced catalytic performance for both for oxidative desulfurization (ODS) and acetalization reactions. ZrW-NR@UiO-66(Zr)-NO2 can eliminate 500 ppm sulfur within 9 min at 40 °C in ODS, and can transform 5.6 mmol benzaldehyde after 3 min at room temperature in acetalization reaction. Its turnover frequencies reach 72.3 h-1 at 40 °C for ODS which is 33.4 times higher than UiO-66(Zr)-NO2, and 28140 h-1 for acetalization which is the highest among previous reports. Density functional theory calculation result indicates that the W sites in ZrW-NR can decompose H2O2 to WVI-peroxo intermediates that contribute to catalytic activity for the ODS reaction. This work opens a new solvent-free approach for preparing MOFs-based host-guest catalysts to upgrade their redox and acid performance.
RESUMEN
The anti-PD-1 antibodies have been reported to show a striking effect in relapsed and refractory(R/R) classical Hodgkin lymphoma (cHL), however, there is still limited real-world data assessing the role of anti-PD-1 antibody monotherapy in early-stage cHL. In this retrospective analysis, we reported the effectiveness and safety of tislelizumab monotherapy in the first-line therapy of early-stage cHL. Twenty-three consecutive patients (10 males and 13 females) with previously untreated stage I A-II B cHL were included. At interim evaluation after 2 doses of tislelizumab monotherapy, 11 of 23 patients (47.8%) achieved complete response (CR). At the end of tislelizumab monotherapy (EOTM), objective response was observed in 22 of 23 patients (95.7%), with CR in 16 patients (69.6%). Among six patients with PR-EOTM, two patients underwent 4 cycles of ABVD chemotherapy and one patient underwent 4 cycles of tislelizumab plus AVD. One patient who developed progressive disease (PD) after 4 doses of tislelizumab subsequently underwent 4 cycles of ABVD chemotherapy. Except for four patients with CR-EOTM, consolidative radiotherapy was given to 19 patients. All patients obtained CR at the end of all treatments. With a median follow-up time of 21.3 months (range, 6.9-32.7 months), the estimated 2-year PFS rate and 2-year OS rate were 95.65% and 100%, respectively. Except for grade 3 lymphocyte count decreased, no other grade 3/4 TRAE was observed. In addition, no serious AE was reported. Our preliminary data observed that tislelizumab monotherapy was safe and highly effective in previously untreated early-stage cHL.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Enfermedad de Hodgkin , Masculino , Femenino , Humanos , Enfermedad de Hodgkin/terapia , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica , Bleomicina/uso terapéutico , Vinblastina , Dacarbazina , DoxorrubicinaRESUMEN
INTRODUCTION: Lymphoma tissue biopsies cannot fully capture genetic features due to accessibility and heterogeneity. We aimed to assess the applicability of circulating tumor DNA (ctDNA) for genomic profiling and disease surveillance in classic Hodgkin lymphoma (cHL), primary mediastinal large B-cell lymphoma (PMBCL), and diffuse large B-cell lymphoma (DLBCL). METHODS: Tumor tissue and/or liquid biopsies of 49 cHLs, 32 PMBCLs, and 74 DLBCLs were subject to next-generation sequencing targeting 475 genes. The concordance of genetic aberrations in ctDNA and paired tissues was investigated, followed by elevating ctDNA-based mutational landscapes and the correlation between ctDNA dynamics and radiological response/progression. RESULTS: ctDNA exhibited high concordance with tissue samples in cHL (78%), PMBCL (84%), and DLBCL (78%). In cHL, more unique mutations were detected in ctDNA than in tissue biopsies (P < 0.01), with higher variant allele frequencies (P < 0.01). Distinct genomic features in cHL, PMBCL, and DLBCL, including STAT6, SOCS1, BTG2, and PIM1 alterations, could be captured by ctDNA alone. Prevalent PD-L1/PD-L2 amplifications were associated with more concomitant alterations in PMBCL (P < 0.01). Moreover, ctDNA fluctuation could reflect treatment responses and indicate relapse before imaging diagnosis. CONCLUSIONS: Lymphoma genomic profiling by ctDNA was concordant with that by tumor tissues. ctDNA might also be applied in lymphoma surveillance.
Asunto(s)
ADN Tumoral Circulante , Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Humanos , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/sangre , Linfoma de Células B Grandes Difuso/diagnóstico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/sangre , Enfermedad de Hodgkin/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Adulto , Mutación , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Neoplasias del Mediastino/genética , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Problems such as bacterial resistance caused by tetracycline antibiotics pose a serious threat to human production and life and ecosystems. We prepared ZnFe2O4@ZnWO4 heterojunction nanocomposites using hydrothermal and coprecipitation methods. The micromorphology, structure, and photoelectrochemical properties were analyzed. In combination with the presence of H2O2, the photo-Fenton activity of the antibiotic tetracycline at high concentration was tested under visible light irradiation, and its catalytic mechanism was investigated. The results showed that the composition of the composite heterojunction improved the catalytic activity of the catalyst. At a pollutant concentration of 50 mg L-1 and pH 5, 30% ZnWO4/ZnFe2O4 degraded 92.1% of tetracycline in 60 min with a degradation rate of 0.0295 min-1, which was 6.7 times higher than that of pure ZnFe2O4. The results of free radical trapping experiments and electron spin resonance techniques indicated that hydroxyl radical (â¢OH) and superoxide radical (O2-) played important roles in the photo-Fenton degradation of tetracycline. Notably, the catalyst maintained a high degradation rate (80%) after five cycles. ZnFe2O4 introduced in this article may provide a promising strategy for achieving strong light absorption and is authoritative in meeting future environmental requirements.
RESUMEN
Gastric cancer (GC) stands as one of the most formidable malignancies worldwide. It is well-established that miRNAs play a crucial role in the initiation and progression of various human cancers. Among these, miR-99a-3p has been implicated in the pathogenesis of GC. In the context of our study, we embarked on the comprehensive examination of miR-99a-3p expression in GC cells. Additionally, we sought to establish a correlation between miR-99a-3p expression levels and the overall survival (OS) of GC patients, and our findings hinted at its potential role in predicting an unfavorable prognosis. To further investigate the functional implications of miR-99a-3p in GC, we conducted a series of cell-based experiments after successfully knocking down miR-99a-3p. These investigations uncovered a substantial inhibition of cellular events associated with tumor progression. Moreover, employing TargetScan, we identified Tripartite motif-containing protein 21 (TRIM21) as a putative target with a binding site for miR-99a-3p. Subsequent dual-luciferase reporter gene assay confirmed the direct interaction between miR-99a-3p and TRIM21. Western blot analysis validated the alteration in TRIM21 expression levels, revealing an upregulation upon miR-99a-3p knockdown. Building on these molecular findings, we extended our investigations to human GC tissues, where we observed a downregulation of TRIM21, which, notably, correlated with shorter overall survival. Lastly, to further solidify our conclusions, we conducted a series of in vitro and in vivo rescue experiments, collectively suggesting that miR-99a-3p promoted the progression of GC cells through the downregulation of TRIM21. In summary, our study comprehensively explored the role of miR-99a-3p in GC, revealing its association with unfavorable patient outcomes, functional implications in tumor progression, and a direct regulatory relationship with TRIM21. These findings collectively underscore the significance of miR-99a-3p in the pathogenesis of GC and present a potential therapeutic avenue for further investigation.
RESUMEN
Instigated by olfactory analysis of odorant molecules, the constitutions of 3,4-dihydrocoumarins prepared by PIFA-based oxidative cyclizations of 3-arylpropionic acids were revised by means of 2D NMR and X-ray analysis. Supported by computational analysis, the migratory mechanism of intermediate spirolactonic cations has been amended: 1,2-alkyl shifts instead of 1,2-carboxylic shifts were selectively obtained.
RESUMEN
BACKGROUND: Vunakizumab, a novel anti-interleukin-17A antibody, has shown promising efficacy for moderate-to-severe plaque psoriasis in a phase 2 trial. OBJECTIVE: We conducted a double-blind, randomized phase 3 trial (NCT04839016) to further evaluate vunakizumab in this population. METHODS: Six hundred ninety subjects were randomized (2:1) to receive vunakizumab 240 mg or placebo at weeks 0, 2, 4, and 8. At week 12, subjects on placebo were switched to vunakizumab 240 mg (weeks 12, 14, 16, and every 4 weeks thereafter). The co-primary endpoints were ≥90% improvement from baseline in the Psoriasis Area and Severity Index score (PASI 90) and a static Physicians Global Assessment score of 0/1 (sPGA 0/1) at week 12. RESULTS: At week 12, the vunakizumab group showed higher PASI 90 (76.8% vs 0.9%) and sPGA 0/1 (71.8% vs 0.4%) response rates, as well as higher PASI 75 (93.6% vs 4.0%), PASI 100 (36.6% vs 0.0%), and sPGA 0 (38.2% vs 0.0%) response rates (all two-sided P < .0001 vs placebo). Efficacy was maintained through week 52 with continuous vunakizumab. Possible treatment-related serious adverse events occurred in 0.9% of vunakizumab-treated subjects. LIMITATIONS: Chinese subjects only; no active comparator. CONCLUSION: Vunakizumab demonstrated robust clinical response at week 12 and through week 52, with good tolerability in moderate-to-severe plaque psoriasis.
RESUMEN
Glomus tumor (GT) is a neoplastic lesion of mesenchymal origin arising from the neuromyoarterial canal or glomus body. Although most GT occur in the peripheral soft tissue and extremities, these tumors can grow anywhere in the body. Here, we describe an uncommon case of GT involving the prostate.
Asunto(s)
Tumor Glómico , Neoplasias de la Próstata , Humanos , Masculino , Tumor Glómico/patología , Tumor Glómico/cirugía , Tumor Glómico/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Persona de Mediana EdadRESUMEN
In clinical trials, unilateral or bilateral data can usually be encountered if a subject contributes one or both of paired organs. For the bilateral data, responses from two paired body parts are correlated. In this paper, we study various confidence intervals of common risk difference in stratified unilateral and bilateral data based on the Dallal's model. Simulation results show that the score method outperforms other methods and provides coverage probability close to the nominal level and satisfactory coverage width. Hence, the method is recommended. In addition, the inverse hyperbolic tangent Wald-type become as optimal as the score method with the increase of sample sizes. An otolaryngology example is used to demonstrate the proposed methods.
RESUMEN
Spermatogenesis is precisely controlled by sophisticated gene expression programs and is driven by epigenetic reprogramming, including histone modification alterations and histone-to-protamine transition. Nuclear receptor binding SET domain protein 2 (Nsd2) is the predominant histone methyltransferase catalyzing H3K36me2 and its role in male germ cell development remains elusive. Here, we report that NSD2 protein is abundant in spermatogenic cells. Conditional loss of Nsd2 in postnatal germ cells impaired fertility owing to apoptosis of spermatocytes and aberrant spermiogenesis. Nsd2 deficiency results in dysregulation of thousands of genes and remarkable reduction of both H3K36me2 and H3K36me3 in spermatogenic cells, with H3K36me2 occupancy correlating positively with expression of germline genes. Nsd2 deficiency leads to H4K16ac elevation in spermatogenic cells, probably through interaction between NSD2 and PSMA8, which regulates acetylated histone degradation. We further reveal that Nsd2 deficiency impairs EP300-induced H4K5/8ac, recognized by BRDT to mediate the eviction of histones. Accordingly, histones are largely retained in Nsd2-deficient spermatozoa. In addition, Nsd2 deficiency enhances expression of protamine genes, leading to increased protamine proteins in Nsd2-deficient spermatozoa. Our findings thus reveal a previously unappreciated role of the Nsd2-dependent chromatin remodeling during spermatogenesis and provide clues to the molecular mechanisms in epigenetic abnormalities impacting male reproductive health.
Asunto(s)
Epigenómica , N-Metiltransferasa de Histona-Lisina , Humanos , Masculino , N-Metiltransferasa de Histona-Lisina/metabolismoRESUMEN
Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.