Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Neurol ; 22(1): 491, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536324

RESUMEN

BACKGROUND: Lysine(K)-specific demethylase 5C (KDM5C) dysfunction causes X-linked syndromic intellectual developmental disorder Claes-Jensen type in male patients. The clinical presentations of female individuals with heterozygous KDM5C variations vary widely and are only now beginning to be characterized in detail. CASE PRESENTATION: Herein, we identified a novel de novo heterozygous nonsense variation of KDM5C (c.3533C > A, p.S1178X) in a sporadic 4-year-old Chinese girl, who presented with Claes-Jensen type-like phenotypes, such as moderate developmental delay, serious expressive language delay, short stature, microcephaly, and typical facial particularities. Moreover, X-chromosome inactivation (XCI) analysis showed no significant skewed X-inactivation. CONCLUSION: The report expands the genotype of KDM5C variation in female patients, delineates the phenotype of affected females in this well-known X-linked disorder, and also reinforces the necessity to consider this X-linked gene, KDM5C, in sporadic female patients.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Masculino , Femenino , Humanos , Mutación , Discapacidad Intelectual Ligada al Cromosoma X/genética , Fenotipo , Histona Demetilasas/genética
2.
ACS Nano ; 8(4): 3313-21, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24601550

RESUMEN

Two-dimensional materials based on ternary system of B, C and N are useful ranging from electric devices to catalysis. The bonding arrangement within these BCN nanosheets largely determines their electronic structure and thus chemical and (or) physical properties, yet it remains a challenge to manipulate their bond structures in a convenient and controlled manner. Recently, we developed a synthetic protocol for the synthesis of crumpled BCN nanosheets with tunable B and N bond structure using urea, boric acid and polyethylene glycol (PEG) as precursors. By carefully selecting the synthesis condition, we can tune the structure of BCN sheets from s-BCN with B and N bond together to h-BCN with B and N homogenously dispersed in BCN sheets. Detailed experiments suggest that the final bond structure of B and N in graphene depends on the preferentially doped N structure in BCN nanosheets. When N substituted the in-plane carbon atom with all its electrons configured into the π electron system of graphene, it facilitates the formation of h-BCN with B and N in separated state. On the contrary, when nitrogen substituted the edge-plane carbon with the nitrogen dopant surrounded with the lone electron pairs, it benefits for the formation of B-N structure. Specially, the compound riched with h-BCN shows excellent ORR performance in alkaline solution due to the synergistic effect between B and N, while s-BCN dominant BCN shows graphite-like activity for ORR, suggesting the intrinsic properties differences of BCN nanosheets with different dopants bond arrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA