Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 629(8012): 697-703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658755

RESUMEN

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Asunto(s)
Microscopía por Crioelectrón , ADN de Cadena Simple , Complejos Multiproteicos , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Humanos , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Modelos Moleculares , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/ultraestructura , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Proteína de Replicación A/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Dominios Proteicos , Sitios de Unión
2.
Nature ; 619(7970): 650-657, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344587

RESUMEN

Homologous recombination is a fundamental process of life. It is required for the protection and restart of broken replication forks, the repair of chromosome breaks and the exchange of genetic material during meiosis. Individuals with mutations in key recombination genes, such as BRCA2 (also known as FANCD1), or the RAD51 paralogues RAD51B, RAD51C (also known as FANCO), RAD51D, XRCC2 (also known as FANCU) and XRCC3, are predisposed to breast, ovarian and prostate cancers1-10 and the cancer-prone syndrome Fanconi anaemia11-13. The BRCA2 tumour suppressor protein-the product of BRCA2-is well characterized, but the cellular functions of the RAD51 paralogues remain unclear. Genetic knockouts display growth defects, reduced RAD51 focus formation, spontaneous chromosome abnormalities, sensitivity to PARP inhibitors and replication fork defects14,15, but the precise molecular roles of RAD51 paralogues in fork stability, DNA repair and cancer avoidance remain unknown. Here we used cryo-electron microscopy, AlphaFold2 modelling and structural proteomics to determine the structure of the RAD51B-RAD51C-RAD51D-XRCC2 complex (BCDX2), revealing that RAD51C-RAD51D-XRCC2 mimics three RAD51 protomers aligned within a nucleoprotein filament, whereas RAD51B is highly dynamic. Biochemical and single-molecule analyses showed that BCDX2 stimulates the nucleation and extension of RAD51 filaments-which are essential for recombinational DNA repair-in reactions that depend on the coupled ATPase activities of RAD51B and RAD51C. Our studies demonstrate that BCDX2 orchestrates RAD51 assembly on single stranded DNA for replication fork protection and double strand break repair, in reactions that are critical for tumour avoidance.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al ADN , Complejos Multiproteicos , Recombinasa Rad51 , Proteínas Supresoras de Tumor , Humanos , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Recombinación Homóloga , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasa Rad51/ultraestructura , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/ultraestructura , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias/genética , Neoplasias/prevención & control , Proteómica , Simulación por Computador , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Roturas del ADN de Doble Cadena
3.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593718

RESUMEN

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , Ácidos Nucleicos Heterodúplex/metabolismo , Animales , ADN Helicasas/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Células HeLa , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Noqueados , Mutación , Ácidos Nucleicos Heterodúplex/genética
4.
Nucleic Acids Res ; 47(21): 11268-11283, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31586398

RESUMEN

Accurate DNA replication is critical for the maintenance of genome integrity and cellular survival. Cancer-associated alterations often involve key players of DNA replication and of the DNA damage-signalling cascade. Post-translational modifications play a fundamental role in coordinating replication and repair and central among them is ubiquitylation. We show that the E3 ligase UBR5 interacts with components of the replication fork, including the translesion synthesis (TLS) polymerase polη. Depletion of UBR5 leads to replication problems, such as slower S-phase progression, resulting in the accumulation of single stranded DNA. The effect of UBR5 knockdown is related to a mis-regulation in the pathway that controls the ubiquitylation of histone H2A (UbiH2A) and blocking this modification is sufficient to rescue the cells from replication problems. We show that the presence of polη is the main cause of replication defects and cell death when UBR5 is silenced. Finally, we unveil a novel interaction between polη and H2A suggesting that UbiH2A could be involved in polη recruitment to the chromatin and the regulation of TLS.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células Cultivadas , Daño del ADN/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Histonas/metabolismo , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Fase S/genética , Ubiquitinación/fisiología
5.
PLoS Genet ; 14(10): e1007643, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30335751

RESUMEN

The Fanconi Anemia (FA) pathway is important for repairing interstrand crosslinks (ICLs) between the Watson-Crick strands of the DNA double helix. An initial and essential stage in the repair process is the detection of the ICL. Here, we report the identification of UHRF2, a paralogue of UHRF1, as an ICL sensor protein. UHRF2 is recruited to ICLs in the genome within seconds of their appearance. We show that UHRF2 cooperates with UHRF1, to ensure recruitment of FANCD2 to ICLs. A direct protein-protein interaction is formed between UHRF1 and UHRF2, and between either UHRF1 and UHRF2, and FANCD2. Importantly, we demonstrate that the essential monoubiquitination of FANCD2 is stimulated by UHRF1/UHRF2. The stimulation is mediating by a retention of FANCD2 on chromatin, allowing for its monoubiquitination by the FA core complex. Taken together, we uncover a mechanism of ICL sensing by UHRF2, leading to FANCD2 recruitment and retention at ICLs, in turn facilitating activation of FANCD2 by monoubiquitination.


Asunto(s)
Reparación del ADN/fisiología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Secuencia de Aminoácidos , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Línea Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Células HEK293 , Células HeLa , Humanos , Dominios y Motivos de Interacción de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
Nucleic Acids Res ; 45(16): 9441-9454, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934491

RESUMEN

DNA translesion synthesis (TLS) is a crucial damage tolerance pathway that oversees the completion of DNA replication in the presence of DNA damage. TLS polymerases are capable of bypassing a distorted template but they are generally considered inaccurate and they need to be tightly regulated. We have previously shown that polη is phosphorylated on Serine 601 after DNA damage and we have demonstrated that this modification is important for efficient damage bypass. Here we report that polη is also phosphorylated by CDK2, in the absence of damage, in a cell cycle-dependent manner and we identify serine 687 as an important residue targeted by the kinase. We discover that phosphorylation on serine 687 regulates the stability of the polymerase during the cell cycle, allowing it to accumulate in late S and G2 when productive TLS is critical for cell survival. Furthermore, we show that alongside the phosphorylation of S601, the phosphorylation of S687 and S510, S512 and/or S514 are important for damage bypass and cell survival after UV irradiation. Taken together our results provide new insights into how cells can, at different times, modulate DNA TLS for improved cell survival.


Asunto(s)
Ciclo Celular/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Ciclo Celular/efectos de la radiación , Línea Celular , Supervivencia Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo , Daño del ADN/efectos de la radiación , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Humanos , Fosforilación , Estabilidad Proteica , Serina/metabolismo , Rayos Ultravioleta
7.
Cell Mol Life Sci ; 73(16): 3097-114, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27094386

RESUMEN

Interstrand crosslinks (ICLs) are a highly toxic form of DNA damage. ICLs can interfere with vital biological processes requiring separation of the two DNA strands, such as replication and transcription. If ICLs are left unrepaired, it can lead to mutations, chromosome breakage and mitotic catastrophe. The Fanconi anemia (FA) pathway can repair this type of DNA lesion, ensuring genomic stability. In this review, we will provide an overview of the cellular response to ICLs. First, we will discuss the origin of ICLs, comparing various endogenous and exogenous sources. Second, we will describe FA proteins as well as FA-related proteins involved in ICL repair, and the post-translational modifications that regulate these proteins. Finally, we will review the process of how ICLs are repaired by both replication-dependent and replication-independent mechanisms.


Asunto(s)
Reactivos de Enlaces Cruzados/efectos adversos , Daño del ADN/efectos de los fármacos , Reparación del ADN , ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Transducción de Señal , Animales , ADN/química , ADN/metabolismo , Aductos de ADN/química , Aductos de ADN/genética , Aductos de ADN/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica , Humanos , Sustancias Intercalantes/efectos adversos , Modelos Moleculares , Procesamiento Proteico-Postraduccional
8.
J Biol Chem ; 287(35): 29429-41, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778262

RESUMEN

Notch signaling is critical for development and adult tissue physiology, controlling cell fate in a context-dependent manner. Upon ligand binding, the transmembrane Notch receptor undergoes two ordered proteolytic cleavages releasing Notch intracellular domain, which regulates the transcription of Notch target genes. The strength of Notch signaling is of crucial importance and depends notably on the quantity of Notch receptor at the cell surface. Using an shRNA library screen monitoring Notch trafficking and degradation in the absence of ligand, we identified mammalian USP12 and its Drosophila melanogaster homolog as novel negative regulators of Notch signaling. USP12 silencing specifically interrupts Notch trafficking to the lysosomes and, as a consequence, leads to an increased amount of receptor at the cell surface and to a higher Notch activity. At the biochemical level, USP12 with its activator UAF1 deubiquitinate the nonactivated form of Notch in cell culture and in vitro. These results characterize a new level of conserved regulation of Notch signaling by the ubiquitin system.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Proteínas Nucleares/genética , Transporte de Proteínas/fisiología , Receptores Notch/genética , Ubiquitina Tiolesterasa/genética
9.
Cell Rep ; 42(2): 112062, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36729836

RESUMEN

Our genomes harbor conserved DNA sequences, known as common fragile sites (CFSs), that are difficult to replicate and correspond to regions of genome instability. Following replication stress, CFS loci give rise to breaks or gaps (termed CFS expression) where under-replicated DNA subsequently undergoes mitotic DNA synthesis (MiDAS). We show that loss of the structure-selective endonuclease GEN1 reduces CFS expression, leading to defects in MiDAS, ultrafine anaphase bridge formation, and DNA damage in the ensuing cell cycle due to aberrant chromosome segregation. GEN1 knockout cells also exhibit an elevated frequency of bichromatid constrictions consistent with the presence of unresolved regions of under-replicated DNA. Previously, the role of GEN1 was thought to be restricted to the nucleolytic resolution of recombination intermediates. However, its ability to cleave under-replicated DNA at CFS loci indicates that GEN1 plays a dual role resolving both DNA replication and recombination intermediates before chromosome segregation.


Asunto(s)
Replicación del ADN , ADN , Humanos , Sitios Frágiles del Cromosoma/genética , Replicación del ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Inestabilidad Genómica
10.
STAR Protoc ; 2(1): 100348, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665628

RESUMEN

Cells possess multiple DNA repair pathways to tackle a variety of DNA lesions. Often, DNA repair proteins function as large protein complexes. Here, we describe a protocol to purify DNA repair protein complexes from nuclei of mammalian cells. The method permits purification of protein complexes containing stable as well as transiently associated proteins, which subsequently can be identified by mass-spectrometry analysis. This protocol can be applied to uncover the functions and mechanism of DNA repair pathways. For complete information on the use and execution of this protocol, please refer to Socha et al. (2020).


Asunto(s)
Núcleo Celular/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Células HeLa , Humanos
11.
Cell Rep ; 33(3): 108289, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086055

RESUMEN

MutSα and MutSß play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSß, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair. We find that MutSß binds HJs and stimulates their resolution by SLX1-SLX4 or SMX in reactions dependent upon direct interactions between MutSß and SLX4. In contrast, MutSα does not stimulate HJ resolution. MSH3-depleted cells exhibit reduced sister chromatid exchanges and elevated levels of homologous recombination ultrafine bridges (HR-UFBs) at mitosis, consistent with defects in the processing of recombination intermediates. These results demonstrate a role for MutSß in addition to its established role in the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease.


Asunto(s)
Resolvasas de Unión Holliday/metabolismo , Proteínas MutS/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Células HEK293 , Resolvasas de Unión Holliday/fisiología , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS/metabolismo , Unión Proteica , Recombinasas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
12.
Cell Rep ; 32(1): 107850, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640220

RESUMEN

The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs). Many FA proteins are recruited to ICLs in a timely fashion so that coordinated repair can occur. However, the mechanism of this process is poorly understood. Here, we report the purification of a FANCD2-containing protein complex with multiple subunits, including WRNIP1. Using live-cell imaging, we show that WRNIP1 is recruited to ICLs quickly after their appearance, promoting repair. The observed recruitment facilitates subsequent recruitment of the FANCD2/FANCI complex. Depletion of WRNIP1 sensitizes cells to ICL-forming drugs. We find that ubiquitination of WRNIP1 and the activity of its UBZ domain are required to facilitate recruitment of FANCD2/FANCI and promote repair. Altogether, we describe a mechanism by which WRNIP1 is recruited rapidly to ICLs, resulting in chromatin loading of the FANCD2/FANCI complex in an unusual process entailing ubiquitination of WRNIP1 and the activity of its integral UBZ domain.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Reactivos de Enlaces Cruzados/química , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Secuencia de Aminoácidos , Supervivencia Celular , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Dominios Proteicos , Subunidades de Proteína/metabolismo , Ubiquitinación
13.
Cell Rep ; 27(10): 2990-3005.e5, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167143

RESUMEN

Interstrand crosslinks (ICLs) of the DNA helix are a deleterious form of DNA damage. ICLs can be repaired by the Fanconi anemia pathway. At the center of the pathway is the FANCD2/FANCI complex, recruitment of which to DNA is a critical step for repair. After recruitment, monoubiquitination of both FANCD2 and FANCI leads to their retention on chromatin, ensuring subsequent repair. However, regulation of recruitment is poorly understood. Here, we report a cluster of phosphosites on FANCD2 whose phosphorylation by CK2 inhibits both FANCD2 recruitment to ICLs and its monoubiquitination in vitro and in vivo. We have found that phosphorylated FANCD2 possesses reduced DNA binding activity, explaining the previous observations. Thus, we describe a regulatory mechanism operating as a molecular switch, where in the absence of DNA damage, the FANCD2/FANCI complex is prevented from loading onto DNA, effectively suppressing the FA pathway.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Quinasa de la Caseína II/metabolismo , ADN/metabolismo , Daño del ADN , Reparación del ADN , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Células HeLa , Humanos , Fosforilación , Unión Proteica , Estructura Cuaternaria de Proteína , ARN Guía de Kinetoplastida/metabolismo , Alineación de Secuencia , Ubiquitinación
14.
Nat Commun ; 7: 12124, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27405460

RESUMEN

The Fanconi anaemia (FA) pathway is important for the repair of DNA interstrand crosslinks (ICL). The FANCD2-FANCI complex is central to the pathway, and localizes to ICLs dependent on its monoubiquitination. It has remained elusive whether the complex is recruited before or after the critical monoubiquitination. Here, we report the first structural insight into the human FANCD2-FANCI complex by obtaining the cryo-EM structure. The complex contains an inner cavity, large enough to accommodate a double-stranded DNA helix, as well as a protruding Tower domain. Disease-causing mutations in the Tower domain are observed in several FA patients. Our work reveals that recruitment of the complex to a stalled replication fork serves as the trigger for the activating monoubiquitination event. Taken together, our results uncover the mechanism of how the FANCD2-FANCI complex activates the FA pathway, and explains the underlying molecular defect in FA patients with mutations in the Tower domain.


Asunto(s)
Reparación del ADN , ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/ultraestructura , Proteínas del Grupo de Complementación de la Anemia de Fanconi/ultraestructura , Anemia de Fanconi/genética , Ubiquitinación , Microscopía por Crioelectrón , Ensayo de Cambio de Movilidad Electroforética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Dominios Proteicos/genética
15.
Cell Rep ; 10(12): 1947-56, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25801034

RESUMEN

The Fanconi anemia (FA) pathway is critical for the cellular response to toxic DNA interstrand crosslinks (ICLs). Using a biochemical purification strategy, we identified UHRF1 as a protein that specifically interacts with ICLs in vitro and in vivo. Reduction of cellular levels of UHRF1 by RNAi attenuates the FA pathway and sensitizes cells to mitomycin C. Knockdown cells display a drastic reduction in FANCD2 foci formation. Using live-cell imaging, we observe that UHRF1 is rapidly recruited to chromatin in response to DNA crosslinking agents and that this recruitment both precedes and is required for the recruitment of FANCD2 to ICLs. Based on these results, we describe a mechanism of ICL sensing and propose that UHRF1 is a critical factor that binds to ICLs. In turn, this binding is necessary for the subsequent recruitment of FANCD2, which allows the DNA repair process to initiate.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/metabolismo , Secuencia de Aminoácidos , Proteínas Potenciadoras de Unión a CCAAT/genética , Cromatina/genética , Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Humanos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA