Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pharm Biol ; 59(1): 275-286, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33651969

RESUMEN

CONTEXT: Poria coco F.A.Wolf (Polyporaceae) dispels dampness and promotes diuresis implying hypouricaemic action. OBJECTIVE: To examine hypouricaemic action of Poria coco. MATERIALS AND METHODS: Ethanol extract (PCE) was prepared by extracting the sclerotium of P. cocos with ethanol, and the water extract (PCW) was produced by bathing the remains with water. PCE and PCW (50, 100 and 200 mg/kg, respectively) were orally administered to hyperuricemic Kunming mice (n = 8) to examine its hypouricaemic effect. Also, molecular docking was performed. RESULTS: P. cocos showed excellent hypouricaemic action, decreasing the serum uric acid of hyperuricaemia (HUA) control (526 ± 112 µmol/L) to 178 ± 53, 153 ± 57 and 151 ± 62 µmol/L (p < 0.01) by PCE and 69 ± 23, 63 ± 15 and 62 ± 20 µmol/L (p < 0.01) by PCW, respectively. According to SCrs, BUNs and H&E staining, PCE and PCW partially attenuated renal dysfunction caused by HUA. They presented no negative effects on ALT, AST and ALP activities. They elevated ABCG2 (ATP-binding cassette super-family G member 2) mRNA and protein expression in comparison to HUA control. In molecular docking, compound 267, 277, 13824, 15730 and 5759 were predicted as the top bioactives of P. cocos against HUA, which even presented better scores than the positive compound, oestrone 3-sulfate. DISCUSSION AND CONCLUSIONS: This paper demonstrated the hypouricaemic and nephroprotective effects of P. cocos in hyperuricemic mice by up-regulating ABCG2. These results may be useful for the development of a hypouricaemic agent.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Hiperuricemia/tratamiento farmacológico , Extractos Vegetales/farmacología , Wolfiporia/química , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Etanol/química , Hiperuricemia/complicaciones , Enfermedades Renales/etiología , Enfermedades Renales/prevención & control , Masculino , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales/administración & dosificación , Regulación hacia Arriba/efectos de los fármacos , Ácido Úrico/sangre , Agua/química
2.
Int J Mol Sci ; 19(10)2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340390

RESUMEN

Inonotus obliquus is an edible mushroom and also a remedy against various diseases, especially metabolic syndrome. In this paper we report the actions of an ethanol extract of I. obliquus (IOE) against hyperuricemia in hyperuricemic mice, and the screen of bioactives. The extract (IOE) was prepared by extracting I. obliquus at 65 °C with ethanol, and characterized by HPLC. IOE at low, middle, and high doses reduced serum uric acid (SUA) of hyperuricemic mice (353 µmol/L) to 215, 174, and 152 µmol/L (p < 0.01), respectively, showing similar hypouricemic effectiveness to the positive controls. IOE showed a non-toxic impact on kidney and liver functions. Of note, IOE suppressed xanthine oxidase (XOD) activity in serum and liver, and also down-regulated renal uric acid transporter 1 (URAT1). Four compounds hit highly against XOD in molecular docking. Overall, the four compounds all occupied the active tunnel, which may inhibit the substrate from entering. The IC50 of betulin was assayed at 121.10 ± 4.57 µM, which was near to that of allopurinol (148.10 ± 5.27 µM). Betulin may be one of the anti-hyperuricemia bioactives in I. obliquus.


Asunto(s)
Basidiomycota/química , Productos Biológicos/química , Productos Biológicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hiperuricemia/enzimología , Modelos Moleculares , Xantina Oxidasa/química , Animales , Descubrimiento de Drogas , Hiperuricemia/sangre , Hiperuricemia/tratamiento farmacológico , Ratones , Relación Estructura-Actividad Cuantitativa , Xantina Oxidasa/antagonistas & inhibidores
3.
Int J Mol Sci ; 19(5)2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29735945

RESUMEN

Searching novel hypouricemic agents of high efficacy and safety has attracted a great attention. Previously, we reported the hypouricemic effect of Ganoderma applanatum, but its bioactives, was not referred. Herein, we report the hypouricemic effect of 2,5-dihydroxyacetophenone (DHAP), a compound screened from Ganoderma applanatum computationally. Serum parameters, such as uric acid (SUA), xanthine oxidase (XOD) activity, blood urea nitrogen (BUN), and creatinine were recorded. Real-time reverse transcription PCR (RT-PCR) and Western blot were exploited to assay RNA and protein expressions of organic anion transporter 1 (OAT1), glucose transporter 9 (GLUT9), uric acid transporter 1 (URAT1), and gastrointestinal concentrative nucleoside transporter 2 (CNT2). DHAP at 20, 40, and 80 mg/kg exerted excellent hypouricemic action on hyperuricemic mice, reducing SUA from hyperuricemic control (407 ± 31 μmol/L, p < 0.01) to 180 ± 29, 144 ± 13, and 139 ± 31 μmol/L, respectively. In contrast to the renal toxic allopurinol, DHAP showed some kidney-protective effects. Moreover, its suppression on XOD activity, in vivo and in vitro, suggested that XOD inhibition may be a mechanism for its hypouricemic effect. Given this, its binding mode to XOD was explored by molecular docking and revealed that three hydrogen bonds may play key roles in its binding and orientation. It upregulated OAT1 and downregulated GLUT9, URAT1, and CNT2 too. In summary, its hypouricemic effect may be mediated by regulation of XOD, OAT1, GLUT9, URAT1, and CNT2.


Asunto(s)
Acetofenonas/química , Acetofenonas/uso terapéutico , Ganoderma/química , Supresores de la Gota/química , Supresores de la Gota/uso terapéutico , Hiperuricemia/tratamiento farmacológico , Animales , Nitrógeno de la Urea Sanguínea , Hiperuricemia/sangre , Masculino , Ratones , Simulación del Acoplamiento Molecular , Ácido Úrico/sangre , Xantina Oxidasa/sangre
4.
Molecules ; 23(10)2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30336599

RESUMEN

Conventionally, benzophenone-type molecules are beneficial for alleviating the UV exposure of humans. More importantly, various compounds with this skeleton have demonstrated various biological activities. In this paper, we report the anti-hyperuricemic effect of the benzophenone compound 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (HMS). Preliminarily, its molecular docking score and xanthine oxidase (XOD) inhibition suggested a good anti-hyperuricemic effect. Then, its anti-hyperuricemic effect, primary mechanisms and general toxicity were examined on a hyperuricemic mouse model which was established using potassium oxonate and hypoxanthine together. HMS demonstrated a remarkable anti- hyperuricemic effect which was near to that of the control drugs, showing promising perspective. General toxicity was assessed and it showed no negative effects on body weight growth and kidney function. Moreover, anti-inflammatory action was observed for HMS via spleen and thymus changes. Its anti-hyperuricemic mechanisms may be ascribed to its inhibition of XOD and its up-regulation of organic anion transporter 1 (OAT1) and down-regulation of glucose transporter 9 (GLUT9).


Asunto(s)
Benzofenonas/administración & dosificación , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Hiperuricemia/tratamiento farmacológico , Proteína 1 de Transporte de Anión Orgánico/genética , Xantina Oxidasa/genética , Animales , Benzofenonas/química , Peso Corporal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperuricemia/patología , Hipoxantina/administración & dosificación , Riñón/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Ácido Oxónico/administración & dosificación , Bazo/efectos de los fármacos , Timo/efectos de los fármacos , Xantina Oxidasa/antagonistas & inhibidores
5.
Biomed Pharmacother ; 153: 113303, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35750011

RESUMEN

In this paper, we reported the hypouricemic effect of 2,4-dihydroxybenzoic acid methyl ester (DAE), a component of Ganoderma applanatum, in hyperuricemic mice through inhibiting XOD and down-regulating URAT1. Computationally, DAE showed a high similarity to allopurinol and depicted a high affinity in docking to XOD. In vitro, DAE exhibited an inhibitory effect against XOD. Importantly, DAE demonstrated a remarkable hypouricemic effect, decreasing serum uric acids (SUAs) of hyperuricemic mice (407 ± 31 µmol/L) to 195 ± 23, 145 ± 33 and 134 ± 16 µmol/L (P < 0.01) at the doses of 20, 40, and 80 mg/kg with a dose-dependent manner and showing efficacies at 54-68 %, which were close to the efficacies of allopurinol (61 %) and benzbromarone (57 %). DAE depicted higher and negatively dose-independent urinary uric acids in comparison with that of the hyperuricemic control, implying DAE exerted an uricosuric effect and also a reduction effect on uric acid production. Unlike toxic allopurinol and benzbromarone, no general toxicity on body weights and no negative influence on liver, kidney, spleen and thymus were observed for DAE. Mechanistically, DAE inhibited XOD activities in vivo. Moreover, DAE up-regulated OAT1 and down-regulated GLUT9, URAT1 and CNT2. Overall, DAE may present a hypouricemic effect through inhibiting XOD and up-regulating OAT1 and down-regulating GLUT9, URAT1 and CNT2. This work provided novel insights into the hypouricemic effect of DAE and G. applanatum.


Asunto(s)
Alopurinol , Hiperuricemia , Alopurinol/farmacología , Animales , Benzbromarona/farmacología , Ésteres/farmacología , Hidroxibenzoatos , Hiperuricemia/tratamiento farmacológico , Riñón , Ratones , Ácido Úrico , Xantina Oxidasa
6.
Phytomedicine ; 103: 154256, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35714456

RESUMEN

BACKGROUND: Hyperuricemia is characterized with high serum uric acids (SUAs) and directly causes suffering gout. Caffeic acid phenethyl ester (CAPE) is widely included in dietary plants and especially propolis of honey hives. HYPOTHESIS/PURPOSE: Since CAPE exerts a property resembling a redox shuttle, the hypothesis is that it may suppress xanthine oxidase (XOD) and alleviate hyperuricemia. The aim is to unveil the hypouricemic effect of CAPE and the underlying mechanisms. METHODS: By establishing a hyperuricemic model with potassium oxonate (PO) and hypoxanthine (HX) together, we investigated the hypouricecmic effect of CAPE. On this model, the expressions of key mRNAs and proteins, including glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), and the activity of XOD were assayed in vivo. Also, the inhibitory effect of CAPE against XOD was assayed in vitro through enzymatic activity tests and by molecular docking. RESULTS: CAPE demonstrated a remarkable hypouricemic effect, which reduced the SUAs of hyperuricemic mice (401 ± 111 µmol/l) to 209 ± 56, 204 ± 65 and 154 ± 40 µmol/l (p < 0.01) at the doses of 15, 30 and 60 mg/kg respectively, depicting efficacies between 48 and 62% and approaching allopurinol's efficacy (52%). Serum parameters, body weights, inner organ coefficients, and H&E staining suggested that CAPE displayed no general toxicity and it alleviated the liver and kidney injuries caused by hyperuricemia. Mechanistically, CAPE decreased XOD activities significantly in vivo, presented an IC50 at 214.57 µM in vitro and depicted a favorable binding to XOD in molecular simulation, indicating that inhibiting XOD may be an underlying mechanism of CAPE against hyperuricemia. CAPE did decreased GLUT9 protein and down-regulated URAT1 mRNA and protein. In addition, CAPE up-regulated ATP binding cassette subfamily G member 2 (ABCG2) and organic anion transporter 3 (OAT3) mRNA and proteins in comparison with that of the hyperuricemic control. All above, CAPE may alleviate hyperuricmia through inhibiting XOD, decreasing GLUT9 and URAT1 and increasing ABCG2 and OAT3. CONCLUSION: CAPE presented potent hypouricemic effect in hyperuricemic mice through inhibiting XOD activity and up-regulating OAT3. CAPE may be a promising treatment against hyperuricemia.


Asunto(s)
Hiperuricemia , Transportadores de Anión Orgánico , Animales , Ácidos Cafeicos , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Riñón , Ratones , Simulación del Acoplamiento Molecular , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ácido Oxónico , Alcohol Feniletílico/análogos & derivados , ARN Mensajero/metabolismo , Ácido Úrico , Xantina Oxidasa/metabolismo
8.
Am J Chin Med ; 46(3): 585-599, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29595077

RESUMEN

Ethanol and water extracts of Armillaria mellea were prepared by directly soaking A. mellea in ethanol (AME) at 65[Formula: see text]C, followed by decocting the remains in water (AMW) at 85[Formula: see text]C. Significantly, AME and AMW at 30, 60 and 120[Formula: see text]mg/kg exhibited excellent hypouricemic actions, causing remarkable declines from hyperuricemic control (351[Formula: see text][Formula: see text]mol/L, [Formula: see text]) to 136, 130 and 115[Formula: see text][Formula: see text]mol/L and 250, 188 and 152[Formula: see text][Formula: see text]mol/L in serum uric acid, correspondingly. In contrast to the evident renal toxicity of allopurinol, these preparations showed little impacts. Moreover, they showed some inhibitory effect on XOD (xanthine oxidase) activity. Compared with hyperuricemic control, protein expressions of OAT1 (organic anion transporter 1) were significantly elevated in AME- and AMW-treated mice. The levels of GLUT9 (glucose transporter 9) expression were significantly decreased by AMW. CNT2 (concentrative nucleoside transporter 2), a key target for purine absorption in gastrointestinal tract was involved in this study, and was verified for its innovative role. Both AME and AMW down-regulated CNT2 proteins in the gastrointestinal tract in hyperuricemic mice. As they exhibited considerable inhibitory effects on XOD, we selected XOD as the target for virtual screening by using molecular docking, and four compounds were hit with high ranks. From the analysis, we concluded that hydrogen bond, Pi-Pi and Pi-sigma interactions might play important roles for their orientations and locations in XOD inhibition.


Asunto(s)
Armillaria/química , Regulación hacia Abajo/efectos de los fármacos , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Etanol , Tracto Gastrointestinal/metabolismo , Expresión Génica/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Enlace de Hidrógeno , Hiperuricemia/metabolismo , Masculino , Ratones , Extractos Vegetales/farmacología , Ácido Úrico/sangre , Agua , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo
9.
Front Microbiol ; 9: 3099, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619178

RESUMEN

Increasing evidence highlights the cardinal role of gut microbiota in tumorigenesis and chemotherapy outcomes. Paclitaxel (PTX), although as a first-line chemotherapy reagent for breast cancer, still requires for improvement on its efficacy and safety due to drug resistance and adverse effects. The present work explored the enhancement of a polysaccharide derived from spore of Ganoderma lucidum (SGP) with PTX in a murine 4T1-breast cancer model. Results showed that the combination of PTX and SGP displayed an improved tumor control, in which mRNA expression of several Warburg effect-related proteins, i.e., glucose transporter 3 (Glut3), lactate dehydrogenase A (Ldha), and pyruvate dehydrogenase kinase (Pdk), and the metabolite profile of tumor was evidently altered. Flowcytometry analysis revealed that the combination treatment recovered the exhausted tumor infiltration lymphocytes (TILs) via inhibiting the expressions of immune checkpoints (PD-1 and Tim-3), while PTX alone evidently increased that of CTLA-4. 16S rRNA sequencing revealed a restoration by the combination treatment on gut microbiota dysbiosis induced by PTX, especially that Bacteroides, Ruminococcus, and other 5 genera were significantly enriched while the cancer-risk genera, Desulfovibrio and Odoribacter, were decreased. Moreover, spearman correlation analysis showed that abundance of Ruminococcus was significantly negative-associated with the amount of frucotose-6-phosphate within the tumor. Collectively, the present study suggests the clinical implication of SGP as an adjuvant candidate for PTX against breast cancer, which possibly relies on the regulation of tumor metabolism and gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA