Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 89(13): 9597-9608, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38885461

RESUMEN

An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.

2.
Inorg Chem ; 62(33): 13530-13536, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37558207

RESUMEN

Metal-organic frameworks (MOFs) have attracted significant attention as sorbents for gas separation and purification. Ideally, an industrially potential adsorbent should combine exceptional gas uptake, excellent stability, and a lower regeneration energy; however, it remains a great challenge. Here, by utilizing the pore space partition (PSP) strategy, we develop three isostructural MOF materials (Co-BDC-TPB, Co-DCBDC-TPB, and Co-DOBDC-TPB) based on pristine MIL-88(Co). The three pore-space-partitioned crystalline microporous MOFs have triangular bipyramid cages and segmented one-dimensional channels, and among them, Co-DOBDC-TPB exhibits the highest CO2 uptake capacity (4.35 mmol g-1) and good CO2/N2 (29.7) and CO2/CH4 (6.2) selectivity. The selectivity-capacity synergy endows it with excellent CO2/N2 and CO2/CH4 separation performance. Moreover, Co-DOBDC-TPB can complete desorption within 10 min. The satisfactory CO2 adsorption ability can be attributed to both microporous aperture arising from PSP and modification of the pore surface by the polar hydroxy group, which enhances the interaction between Co-DOBDC-TPB and CO2 molecules significantly. The exceptional regeneration property may be due to its lower CO2 isosteric heat of adsorption (23.6 kJ/mol). The developed pore-space-partitioned MIL-88(Co) material Co-DOBDC-TPB may have potential application to flue gas and natural gas purification.

3.
J Phys Chem Lett ; 14(8): 2187-2192, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36861336

RESUMEN

Host-guest doping systems with phthalimides (BI) and N-methylphthalimide (NMeBI) as the host and 1,8-naphthalimide (NI) and 4-bromo-1,8-naphthalimide (4BrNI) as the guest have been developed. The 0.2% NI/BI (molar ratio) with a strong C=O···H-N hydrogen bond exhibited a phosphorescence quantum efficiency (29.2%) higher than that of NI/NMeBI with a weak C=O···H-C hydrogen bond (10.1%). A similar trend was observed in the 4BrNI guest system. A remarkable phosphorescent efficiency of 42.1% was achieved in a 0.5% 4BrNI/BI composite, which represents the highest value in NI-based phosphors. This research indicates stronger hydrogen bonding may have a greater contribution in boosting the phosphorescence efficiency.

4.
Org Lett ; 24(10): 2020-2024, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35263540

RESUMEN

A visible-light-promoted atomic substitution reaction for transforming thiocacids into carboxylic acids with dimethyl sulfoxide (DMSO) as the oxygen source has been developed, affording various alkyl and aryl carboxylic acids in over 90% yields. The atomic substitution process proceeds smoothly through the photochemical reactivity of the formed hydrogen-bonding adduct between thioacids and DMSO. A DMSO-involved proton-coupled electron transfer (PCET) and the simultaneous generation of thiyl and hydroxyl radicals are proposed to be key steps for realizing the transformation.


Asunto(s)
Ácidos Carboxílicos , Dimetilsulfóxido , Transporte de Electrón , Oxidación-Reducción , Protones , Compuestos de Azufre
5.
Chem Commun (Camb) ; 58(22): 3641-3644, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35212330

RESUMEN

The room-temperature phosphorescence of 1,8-naphthalimide was activated by doping it into aromatic dicarboxylic acids. The doping system gives a bright yellow afterglow and 1,8-naphthalimide and isophthalic acid (0.02 mol% doping content) afford a phosphorescent lifetime of 403 ms and a quantum yield of 4.2%. Both energy transfer from the host to the guest and the formation of an intermolecular hydrogen-bonding network are responsible for the observed efficient and long-lived phosphorescence.


Asunto(s)
Ácidos Dicarboxílicos , Naftalimidas , Transferencia de Energía , Luminiscencia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA