Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biol Chem ; 300(7): 107427, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823641

RESUMEN

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with Na+, Li+, or H+ but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt and the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport remain poorly understood. In this study, we solved two x-ray crystal structures of MelBSt, the cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published. We determined the energetic contributions of three major Na+-binding residues for the selection of Na+ and H+ by free energy simulations. Transport assays showed that the D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport exhibited poor activities at greater bulky ΔpH and better activities at reversal ΔpH, supporting the novel theory of transmembrane-electrostatically localized protons and the associated membrane potential as the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket of MelBSt.

2.
J Chem Phys ; 156(24): 245102, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35778097

RESUMEN

Molecular photoswitches are widely used in photopharmacology, where the biomolecular functions are photo-controlled reversibly with high spatiotemporal precision. Despite the success of this field, it remains elusive how the protein environment modulates the photochemical properties of photoswitches. Understanding this fundamental question is critical for designing more effective light-regulated drugs with mitigated side effects. In our recent work, we employed first-principles non-adiabatic dynamics simulations to probe the effects of protein on the trans to cis photoisomerization of phototrexate (PTX), a photochromic analog of the anticancer therapeutic methotrexate that inhibits the target enzyme dihydrofolate reductase (DHFR). Building upon this study, in this work, we employ multiscale simulations to unravel the full photocycle underlying the light-regulated reversible inhibition of DHFR by PTX, which remains elusive until now. First-principles non-adiabatic dynamics simulations reveal that the cis to trans photoisomerization quantum yield is hindered in the protein due to backward isomerization on the ground-state following non-adiabatic transition, which arises from the favorable binding of the cis isomer with the protein. However, free energy simulations indicate that cis to trans photoisomerization significantly decreases the binding affinity of the PTX. Thus, the cis to trans photoisomerization most likely precedes the ligand unbinding from the protein. We propose the most probable photocycle of the PTX-DHFR system. Our comprehensive simulations highlight the trade-offs among the binding affinity, photoisomerization quantum yield, and the thermal stability of the ligand's different isomeric forms. As such, our work reveals new design principles of light-regulated drugs in photopharmacology.


Asunto(s)
Simulación de Dinámica Molecular , Tetrahidrofolato Deshidrogenasa , Isomerismo , Ligandos
3.
J Am Chem Soc ; 143(14): 5425-5437, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33794085

RESUMEN

Channelrhodopsin 2 (ChR2) is the most commonly used tool in optogenetics. Because of its faster photocycle compared to wild-type (WT) ChR2, the E123T mutant of ChR2 is a useful optogenetic tool when fast neuronal stimulation is needed. Interestingly, in spite of its faster photocycle, the initial step of the photocycle in E123T (photoisomerization of retinal protonated Schiff base or RPSB) was found experimentally to be much slower than that of WT ChR2. The E123T mutant replaces the negatively charged E123 residue with a neutral T123 residue, perturbing the electric field around the RPSB. Understanding the RPSB photoisomerization mechanism in ChR2 mutants will provide molecular-level insights into how ChR2 photochemical reactivity can be controlled, which will lay the foundation for improving the design of optogenetic tools. In this work, we combine ab initio nonadiabatic dynamics simulation, excited state free energy calculation, and reaction path search to comprehensively characterize the RPSB photoisomerization mechanism in the E123T mutant of ChR2. Our simulation agrees with previous experiments in predicting a red-shifted absorption spectrum and significant slowdown of photoisomerization in the E123T mutant. Interestingly, our simulations predict similar photoisomerization quantum yields for the mutant and WT despite the differences in excited-state lifetime and absorption maximum. Upon mutation, the neutralization of the negative charge on the E123 residue increases the isomerization barrier, alters the reaction pathway, and changes the relative stability of two fluorescent states. Our findings provide new insight into the intricate role of the electrostatic environment on the RPSB photoisomerization mechanism in microbial rhodopsins.


Asunto(s)
Channelrhodopsins/química , Procesos Fotoquímicos , Electricidad Estática , Isomerismo , Modelos Moleculares , Conformación Proteica , Teoría Cuántica
4.
Phys Chem Chem Phys ; 23(46): 26263-26272, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787133

RESUMEN

Luminogens exhibiting aggregation-induced-emission characteristics (AIEgens) have been designed as sensitive biosensors thanks to their "turn-on" fluorescence upon target binding. However, their AIE mechanism in biomolecules remains elusive except for the qualitative picture of restricted intramolecular motions. In this work, we employed ab initio simulations to investigate the AIE mechanism of two tetraphenylethylene derivatives recently developed for sensitive detection of human serum albumin (HSA) in biological fluids. For the first time, we quantified the ab initio free energy surfaces and kinetics of AIEgens to access the conical intersections on the excited state in the protein and aqueous solution, using a novel first-principles electronic structure method that incorporates both static and dynamic electron correlations. Our simulations accurately reproduce the experimental spectra and high-level correlated electronic structure calculations. We found that in HSA the internal conversion through the cyclization reaction is preferred over the isomerization around the central ethylenic double bond, whereas in the aqueous solution the reverse is true. Accordingly, the protein environment is able to moderately speed up certain non-radiative decay pathways, a new finding that is beyond the prediction of the existing model of restricted access to a conical intersection (RACI). As such, our findings highlight the complicated effects of the protein confinement on the competing non-radiative decay channels, which has been largely ignored so far, and extend the existing theories of AIE to biological systems. The new insights and the multiscale computational methods used in this work will aid the design of sensitive AIEgens for bioimaging and disease diagnosis.


Asunto(s)
Colorantes Fluorescentes/química , Albúmina Sérica Humana/química , Estilbenos/química , Teoría Funcional de la Densidad , Fluorescencia , Humanos , Modelos Moleculares , Estructura Molecular , Imagen Óptica , Agregado de Proteínas
5.
J Am Chem Soc ; 142(49): 20680-20690, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33228358

RESUMEN

Azobenzene is one of the most ubiquitous photoswitches in photochemistry and a prototypical model for photoisomerizing systems. Despite this, its wavelength-dependent photochemistry has puzzled researchers for decades. Upon excitation to the higher energy ππ* excited state instead of the dipole-forbidden nπ* state, the quantum yield of isomerization from trans- to cis-azobenzene is halved. The difficulties associated with unambiguously resolving this effect both experimentally and theoretically have contributed to lasting controversies regarding the photochemistry of azobenzene. Here, we systematically characterize the dynamic photoreaction pathways of azobenzene by performing first-principles simulations of the nonadiabatic dynamics following excitation to both the ππ* and the nπ* states. We demonstrate that ground-state recovery is mediated by two distinct S1 decay pathways: a reactive twisting pathway and an unreactive planar pathway. Increased preference for the unreactive pathway upon ππ* excitation largely accounts for the wavelength-dependent behavior observed in azobenzene.

6.
Proc Natl Acad Sci U S A ; 114(23): 5924-5929, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28536198

RESUMEN

Cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water and uses the released free energy to pump protons against the transmembrane proton gradient. To better understand the proton-pumping mechanism of the wild-type (WT) CcO, much attention has been given to the mutation of amino acid residues along the proton translocating D-channel that impair, and sometimes decouple, proton pumping from the chemical catalysis. Although their influence has been clearly demonstrated experimentally, the underlying molecular mechanisms of these mutants remain unknown. In this work, we report multiscale reactive molecular dynamics simulations that characterize the free-energy profiles of explicit proton transport through several important D-channel mutants. Our results elucidate the mechanisms by which proton pumping is impaired, thus revealing key kinetic gating features in CcO. In the N139T and N139C mutants, proton back leakage through the D-channel is kinetically favored over proton pumping due to the loss of a kinetic gate in the N139 region. In the N139L mutant, the bulky L139 side chain inhibits timely reprotonation of E286 through the D-channel, which impairs both proton pumping and the chemical reaction. In the S200V/S201V double mutant, the proton affinity of E286 is increased, which slows down both proton pumping and the chemical catalysis. This work thus not only provides insight into the decoupling mechanisms of CcO mutants, but also explains how kinetic gating in the D-channel is imperative to achieving high proton-pumping efficiency in the WT CcO.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Fenómenos Bioquímicos/fisiología , Simulación por Computador , Complejo IV de Transporte de Electrones/fisiología , Transporte Iónico/fisiología , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Oxidación-Reducción , Bombas de Protones/genética , Protones
7.
J Am Chem Soc ; 141(45): 18193-18203, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31621314

RESUMEN

The conversion of light energy into work is essential to life on earth. Bacteriorhodopsin (bR), a light-activated proton pump in Archae, has served for many years as a model system for the study of this process in photoactive proteins. Upon absorption of a photon, its chromophore, the retinal protonated Schiff base (RPSB), isomerizes from its native all-trans form to a 13-cis form and pumps a proton out of the cell in a process that is coupled to eventual ATP synthesis. Despite numerous time-resolved spectroscopic studies over the years, the details of the photodynamics of bR on the excited state, particularly the characterization of the I fluorescent state, the time-resolved reaction mechanism, and the role of the counterion cluster of RPSB, remain uncertain. Here, we use ab initio multiple spawning (AIMS) with spin-restricted ensemble Kohn-Sham (REKS) theory to simulate the nonadiabatic dynamics of the ultrafast photoreaction in bR. The excited state dynamics can be partitioned into three distinct phases: (1) relaxation away from the Franck-Condon region dominated by changes in retinal bond length alternation, (2) dwell time on the excited state in the I fluorescent state featuring an untwisted, bond length inverted RPSB, and (3) rapid torsional evolution to the conical intersection after overcoming a small excited state barrier. We fully characterize the I fluorescent state and the excited state barrier that hinders direct evolution to the conical intersection following photoexcitation. We also find that photoisomerization is accompanied by weakening of the interaction between RPSB and its counterion cluster. However, in contradiction with a recent time-resolved X-ray experiment, hydrogen bond cleavage is not necessary to reproduce the observed photoisomerization dynamics.


Asunto(s)
Bacteriorodopsinas/química , Retinaldehído/análogos & derivados , Bases de Schiff/química , Bacteriorodopsinas/efectos de la radiación , Teoría Funcional de la Densidad , Fluorescencia , Halobacterium salinarum/química , Luz , Modelos Químicos , Modelos Moleculares , Retinaldehído/efectos de la radiación , Bases de Schiff/efectos de la radiación
8.
J Am Chem Soc ; 141(29): 11667-11676, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31264413

RESUMEN

The influenza A M2 protein is an acid-activated proton channel responsible for acidification of the inside of the virus, a critical step in the viral life cycle. This channel has four central histidine residues that form an acid-activated gate, binding protons from the outside until an activated state allows proton transport to the inside. While previous work has focused on proton transport through the channel, the structural and dynamic changes that accompany proton flux and enable activation have yet to be resolved. In this study, extensive Multiscale Reactive Molecular Dynamics simulations with explicit Grotthuss-shuttling hydrated excess protons are used to explore detailed molecular-level interactions that accompany proton transport in the +0, + 1, and +2 histidine charge states. The results demonstrate how the hydrated excess proton strongly influences both the protein and water hydrogen-bonding network throughout the channel, providing further insight into the channel's acid-activation mechanism and rectification behavior. We find that the excess proton dynamically, as a function of location, shifts the protein structure away from its equilibrium distributions uniquely for different pH conditions consistent with acid-activation. The proton distribution in the xy-plane is also shown to be asymmetric about the channel's main axis, which has potentially important implications for the mechanism of proton conduction and future drug design efforts.


Asunto(s)
Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Histidina/química , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Conformación Proteica , Protones , Agua/química
9.
Proc Natl Acad Sci U S A ; 113(27): 7420-5, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27339133

RESUMEN

Cytochrome c oxidase (CcO) reduces oxygen to water and uses the released free energy to pump protons across the membrane. We have used multiscale reactive molecular dynamics simulations to explicitly characterize (with free-energy profiles and calculated rates) the internal proton transport events that enable proton pumping during first steps of oxidation of the fully reduced enzyme. Our results show that proton transport from amino acid residue E286 to both the pump loading site (PLS) and to the binuclear center (BNC) are thermodynamically driven by electron transfer from heme a to the BNC, but that the former (i.e., pumping) is kinetically favored whereas the latter (i.e., transfer of the chemical proton) is rate-limiting. The calculated rates agree with experimental measurements. The backflow of the pumped proton from the PLS to E286 and from E286 to the inside of the membrane is prevented by large free-energy barriers for the backflow reactions. Proton transport from E286 to the PLS through the hydrophobic cavity and from D132 to E286 through the D-channel are found to be strongly coupled to dynamical hydration changes in the corresponding pathways and, importantly, vice versa.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Modelos Químicos , Bombas de Protones , Simulación por Computador
10.
Proc Natl Acad Sci U S A ; 113(45): E6955-E6964, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791184

RESUMEN

The homotetrameric influenza A M2 channel (AM2) is an acid-activated proton channel responsible for the acidification of the influenza virus interior, an important step in the viral lifecycle. Four histidine residues (His37) in the center of the channel act as a pH sensor and proton selectivity filter. Despite intense study, the pH-dependent activation mechanism of the AM2 channel has to date not been completely understood at a molecular level. Herein we have used multiscale computer simulations to characterize (with explicit proton transport free energy profiles and their associated calculated conductances) the activation mechanism of AM2. All proton transfer steps involved in proton diffusion through the channel, including the protonation/deprotonation of His37, are explicitly considered using classical, quantum, and reactive molecular dynamics methods. The asymmetry of the proton transport free energy profile under high-pH conditions qualitatively explains the rectification behavior of AM2 (i.e., why the inward proton flux is allowed when the pH is low in viral exterior and high in viral interior, but outward proton flux is prohibited when the pH gradient is reversed). Also, in agreement with electrophysiological results, our simulations indicate that the C-terminal amphipathic helix does not significantly change the proton conduction mechanism in the AM2 transmembrane domain; the four transmembrane helices flanking the channel lumen alone seem to determine the proton conduction mechanism.

11.
J Am Chem Soc ; 140(31): 9827-9843, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29990421

RESUMEN

Hydrogen bonds are fundamental to biological systems and are regularly found in networks implicated in folding, molecular recognition, catalysis, and allostery. Given their ubiquity, we asked the fundamental questions of whether, and to what extent, hydrogen bonds within networks are structurally coupled. To address these questions, we turned to three protein systems, two variants of ketosteroid isomerase and one of photoactive yellow protein. We perturbed their hydrogen bond networks via a combination of site-directed mutagenesis and unnatural amino acid substitution, and we used 1H NMR and high-resolution X-ray crystallography to determine the effects of these perturbations on the lengths of the two oxyanion hole hydrogen bonds that are donated to negatively charged transition state analogs. Perturbations that lengthened or shortened one of the oxyanion hole hydrogen bonds had the opposite effect on the other. The oxyanion hole hydrogen bonds were also affected by distal hydrogen bonds in the network, with smaller perturbations for more remote hydrogen bonds. Across 19 measurements in three systems, the length change in one oxyanion hole hydrogen bond was propagated to the other, by a factor of -0.30 ± 0.03. This common effect suggests that hydrogen bond coupling is minimally influenced by the remaining protein scaffold. The observed coupling is reproduced by molecular mechanics and quantum mechanics/molecular mechanics (QM/MM) calculations for changes to a proximal oxyanion hole hydrogen bond. However, effects from distal hydrogen bonds are reproduced only by QM/MM, suggesting the importance of polarization in hydrogen bond coupling. These results deepen our understanding of hydrogen bonds and their networks, providing strong evidence for long-range coupling and for the extent of this coupling. We provide a broadly predictive quantitative relationship that can be applied to and can be further tested in new systems.


Asunto(s)
Proteínas Bacterianas/química , Cetosteroides/química , Fotorreceptores Microbianos/química , Esteroide Isomerasas/química , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Espectroscopía de Protones por Resonancia Magnética
12.
J Chem Phys ; 149(4): 044101, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30068189

RESUMEN

In the last several years, a symmetrical quasi-classical (SQC) windowing model applied to the classical Meyer-Miller (MM) vibronic Hamiltonian has been shown to be a simple, efficient, general, and quite-accurate method for treating electronically nonadiabatic processes at the totally classical level. Here, the SQC/MM methodology is applied to ultrafast exciton dynamics in a Frenkel/site-exciton model of oligothiophene (OT) as a model of organic semiconductor polymers. In order to keep the electronic representation as compact and efficient as possible, the adiabatic version of the MM Hamiltonian was employed, with dynamical calculations carried out in the recently developed "kinematic momentum" representation, from which site/monomer-specific (diabatic) excitation probabilities were extracted using a new procedure developed in this work. The SQC/MM simulation results are seen to describe coherent exciton transport driven by planarization of a central torsion defect in the OT oligomer as well as to capture exciton self-trapping effects in good agreement with benchmark quantum calculations using the multi-layer multiconfiguration time-dependent Hartree approach. The SQC/MM calculations are also seen to significantly outperform the standard Ehrenfest approach, which shows serious discrepancies. These results are encouraging, not only because they illustrate a significant further application of the SQC/MM approach and its utility, but because they strongly suggest that classical mechanical simulations (with the potential for linear scaling efficiency) can be used to capture, quantitatively, important dynamical features of electronic excitation energy transfer in semiconducting polymers.

13.
J Chem Phys ; 147(6): 064112, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28810754

RESUMEN

The Meyer-Miller (MM) classical vibronic (electronic + nuclear) Hamiltonian for electronically non-adiabatic dynamics-as used, for example, with the recently developed symmetrical quasiclassical (SQC) windowing model-can be written in either a diabatic or an adiabatic representation of the electronic degrees of freedom, the two being a canonical transformation of each other, thus giving the same dynamics. Although most recent applications of this SQC/MM approach have been carried out in the diabatic representation-because most of the benchmark model problems that have exact quantum results available for comparison are typically defined in a diabatic representation-it will typically be much more convenient to work in the adiabatic representation, e.g., when using Born-Oppenheimer potential energy surfaces (PESs) and derivative couplings that come from electronic structure calculations. The canonical equations of motion (EOMs) (i.e., Hamilton's equations) that come from the adiabatic MM Hamiltonian, however, in addition to the common first-derivative couplings, also involve second-derivative non-adiabatic coupling terms (as does the quantum Schrödinger equation), and the latter are considerably more difficult to calculate. This paper thus revisits the adiabatic version of the MM Hamiltonian and describes a modification of the classical adiabatic EOMs that are entirely equivalent to Hamilton's equations but that do not involve the second-derivative couplings. The second-derivative coupling terms have not been neglected; they simply do not appear in these modified adiabatic EOMs. This means that SQC/MM calculations can be carried out in the adiabatic representation, without approximation, needing only the PESs and the first-derivative coupling elements. The results of example SQC/MM calculations are presented, which illustrate this point, and also the fact that simply neglecting the second-derivative couplings in Hamilton's equations (and presumably also in the Schrödinger equation) can cause very significant errors.

14.
Proc Natl Acad Sci U S A ; 111(26): 9396-401, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979779

RESUMEN

The influenza A virus M2 channel (AM2) is crucial in the viral life cycle. Despite many previous experimental and computational studies, the mechanism of the activating process in which proton permeation acidifies the virion to release the viral RNA and core proteins is not well understood. Herein the AM2 proton permeation process has been systematically characterized using multiscale computer simulations, including quantum, classical, and reactive molecular dynamics methods. We report, to our knowledge, the first complete free-energy profiles for proton transport through the entire AM2 transmembrane domain at various pH values, including explicit treatment of excess proton charge delocalization and shuttling through the His37 tetrad. The free-energy profiles reveal that the excess proton must overcome a large free-energy barrier to diffuse to the His37 tetrad, where it is stabilized in a deep minimum reflecting the delocalization of the excess charge among the histidines and the cost of shuttling the proton past them. At lower pH values the His37 tetrad has a larger total charge that increases the channel width, hydration, and solvent dynamics, in agreement with recent 2D-IR spectroscopic studies. The proton transport barrier becomes smaller, despite the increased charge repulsion, due to backbone expansion and the more dynamic pore water molecules. The calculated conductances are in quantitative agreement with recent experimental measurements. In addition, the free-energy profiles and conductances for proton transport in several mutants provide insights for explaining our findings and those of previous experimental mutagenesis studies.


Asunto(s)
Virus de la Influenza A/química , Modelos Moleculares , Protones , Proteínas de la Matriz Viral/química , Liberación del Virus/fisiología , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular
15.
J Chem Theory Comput ; 20(11): 4778-4789, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38775818

RESUMEN

Conical intersection (CI) seams are configuration spaces of a molecular system where two or more (spin) adiabatic electronic states are degenerate in energy. They play essential roles in photochemistry because nonradiative decays often occur near the minima of the seam, i.e., the minimum energy CIs (MECIs). Thus, it is important to explore the CI seams and discover the MECIs. Although various approaches exist for CI seam exploration, most of them are local in nature, requiring reasonable initial guesses of geometries and nuclear gradients during the search. Global search algorithms, on the other hand, are powerful because they can fully sample the configurational space and locate important MECIs missed by local algorithms. However, global algorithms are often computationally expensive for large systems due to their poor scalability with respect to the number of degrees of freedom. To overcome this challenge, we develop the parallel on-the-fly Crystal algorithm to globally explore the CI seam space, taking advantage of its superior scaling behavior. Specifically, Crystal is coupled with on-the-fly evaluations of the excited and ground state energies using multireference electronic structure methods. Meanwhile, the algorithm is parallelized to further boost its computational efficiency. The effectiveness of this new algorithm is tested for three types of molecular photoswitches of significant importance in material and biomedical sciences: photostatin (PST), stilbene, and butadiene. A rudimentary implementation of the algorithm is applied to PST and stilbene, resulting in the discovery of all previously identified MECIs and several new ones. A refined version of the algorithm, combined with a systematic clustering technique, is applied to butadiene, resulting in the identification of an unprecedented number of energetically accessible MECIs. The results demonstrate that the parallel on-the-fly Crystal algorithm is a powerful tool for automated global CI seam exploration.

16.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464317

RESUMEN

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the major facilitator superfamily (MFS) transporters, which play important roles in human health and diseases. MelBSt catalyzed the symport of galactosides with either H+, Li+, or Na+, but prefers the coupling with Na+. Previously, we determined the structures of the inward- and outward-facing conformation of MelBSt, as well as the molecular recognition for galactoside and Na+. However, the molecular mechanisms for H+- and Na+-coupled symport still remain poorly understood. We have solved two x-ray crystal structures of MelBSt cation-binding site mutants D59C at an unliganded apo-state and D55C at a ligand-bound state, and both structures display the outward-facing conformations virtually identical as published previously. We determined the energetic contributions of three major Na+-binding residues in cation selectivity for Na+ and H+ by the free energy simulations. The D55C mutant converted MelBSt to a solely H+-coupled symporter, and together with the free-energy perturbation calculation, Asp59 is affirmed to be the sole protonation site of MelBSt. Unexpectedly, the H+-coupled melibiose transport with poor activities at higher ΔpH and better activities at reversal ΔpH was observed, supporting that the membrane potential is the primary driving force for the H+-coupled symport mediated by MelBSt. This integrated study of crystal structure, bioenergetics, and free energy simulations, demonstrated the distinct roles of the major binding residues in the cation-binding pocket.

17.
Elife ; 122024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381130

RESUMEN

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.


Asunto(s)
Proteínas de Transporte de Membrana , Cloruro de Sodio , Transporte Iónico , Cationes , Azúcares
18.
J Phys Chem B ; 127(41): 8809-8824, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37796883

RESUMEN

Unspecific peroxygenases (UPOs) can selectively oxyfunctionalize unactivated hydrocarbons by using peroxides under mild conditions. They circumvent the oxygen dilemma faced by cytochrome P450s and exhibit greater stability than the latter. As such, they hold great potential for industrial applications. A thorough understanding of their catalysis is needed to improve their catalytic performance. However, it remains elusive how UPOs effectively convert peroxide to Compound I (CpdI), the principal oxidizing intermediate in the catalytic cycle. Previous computational studies of this process primarily focused on heme peroxidases and P450s, which have significant differences in the active site from UPOs. Additionally, the roles of peroxide unbinding in the kinetics of CpdI formation, which is essential for interpreting existing experiments, have been understudied. Moreover, there has been a lack of free energy characterizations with explicit sampling of protein and hydration dynamics, which is critical for understanding the thermodynamics of the proton transport (PT) events involved in CpdI formation. To bridge these gaps, we employed multiscale simulations to comprehensively characterize the CpdI formation in wild-type UPO from Agrocybe aegerita (AaeUPO). Extensive free energy and potential energy calculations were performed in a quantum mechanics/molecular mechanics setting. Our results indicate that substrate-binding dehydrates the active site, impeding the PT from H2O2 to a nearby catalytic base (Glu196). Furthermore, the PT is coupled with considerable hydrogen bond network rearrangements near the active site, facilitating subsequent O-O bond cleavage. Finally, large unbinding free energy barriers kinetically stabilize H2O2 at the active site. These findings reveal a delicate balance among PT, hydration dynamics, hydrogen bond rearrangement, and cosubstrate unbinding, which collectively enable efficient CpdI formation. Our simulation results are consistent with kinetic measurements and offer new insights into the CpdI formation mechanism at atomic-level details, which can potentially aid the design of next-generation biocatalysts for sustainable chemical transformations of feedstocks.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Peróxido de Hidrógeno , Sistema Enzimático del Citocromo P-450/química , Simulación de Dinámica Molecular , Catálisis
19.
J Chem Theory Comput ; 19(18): 6484-6499, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37607344

RESUMEN

Molecular photoswitches offer precise, reversible photocontrol over biomolecular functions and are promising light-regulated drug candidates with minimal side effects. Quantifying thermal isomerization rates of photoswitches in their target biomolecules is essential for fine-tuning their light-controlled drug activity. However, the effects of protein binding on isomerization kinetics remain poorly understood, and simulations are crucial for filling this gap. Challenges in the simulation include describing multireference electronic structures near transition states, disentangling competing reaction pathways, and sampling protein-ligand interactions. To overcome these challenges, we used multiscale simulations to characterize the thermal isomerization of photostatins (PSTs), which are light-regulated microtubule inhibitors for potential cancer phototherapy. We employed a new ab initio multireference electronic structure method in a quantum mechanics/molecular mechanics setting and combined it with enhanced sampling techniques to characterize the cis to trans free-energy profiles of three PSTs in a vacuum, aqueous solution, and tubulin dimer. The significant advantage of our novel approach is the efficient treatment of the multireference character in PSTs' electronic wavefunction throughout the conformational sampling of protein-ligand interactions along their isomerization pathways. We also benchmarked our calculations using high-level ab initio multireference electronic structure methods and explored the competing isomerization pathways. Notably, calculations in a vacuum and implicit solvent models cannot predict the order of the PSTs' thermal half-lives in the aqueous solution observed in the experiment. Only by explicitly treating the solvent molecules can the correct order of isomerization kinetics be reproduced. Protein binding perturbs free-energy barriers due to hydrogen bonding between PSTs and nearby polar residues. Our work generates comprehensive, high-quality benchmark data and offers guidance for selecting computational methods to study the thermal isomerization of photoswitches. Ab initio multireference free-energy calculations in explicit molecular environments are crucial for predicting the effects of substituents on the thermal half-lives of photoswitches in biological systems.


Asunto(s)
Simulación de Dinámica Molecular , Agua , Isomerismo , Ligandos , Solventes/química , Agua/química
20.
J Phys Chem B ; 127(51): 10987-10999, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38096487

RESUMEN

Unspecific peroxygenases (UPOs) are emerging as promising biocatalysts for selective oxyfunctionalization of unactivated C-H bonds. However, their potential in large-scale synthesis is currently constrained by suboptimal chemical selectivity. Improving the selectivity of UPOs requires a deep understanding of the molecular basis of their catalysis. Recent molecular simulations have sought to unravel UPO's selectivity and inform their design principles. However, most of these studies focused on substrate-binding poses. Few researchers have investigated how the reactivity of CpdI, the principal oxidizing intermediate in the catalytic cycle, influences selectivity in a realistic protein environment. Moreover, the influence of protein electrostatics on the reaction kinetics of CpdI has also been largely overlooked. To bridge this gap, we used multiscale simulations to interpret the regio- and enantioselective hydroxylation of the n-heptane substrate catalyzed by Agrocybe aegerita UPO (AaeUPO). We comprehensively characterized the energetics and kinetics of the hydrogen atom-transfer (HAT) step, initiated by CpdI, and the subsequent oxygen rebound step forming the product. Notably, our approach involved both free energy and potential energy evaluations in a quantum mechanics/molecular mechanics (QM/MM) setting, mitigating the dependence of results on the choice of initial conditions. These calculations illuminate the thermodynamics and kinetics of the HAT and oxygen rebound steps. Our findings highlight that both the conformational selection and the distinct chemical reactivity of different substrate hydrogen atoms together dictate the regio- and enantio-selectivity. Building on our previous study of CpdI's formation in AaeUPO, our results indicate that the HAT step is the rate-limiting step in the overall catalytic cycle. The subsequent oxygen rebound step is swift and retains the selectivity determined by the HAT step. We also pinpointed several polar and charged amino acid residues whose electrostatic potentials considerably influence the reaction barrier of the HAT step. Notably, the Glu196 residue is pivotal for both the CpdI's formation and participation in the HAT step. Our research offers in-depth insights into the catalytic cycle of AaeUPO, which will be instrumental in the rational design of UPOs with enhanced properties.


Asunto(s)
Hidrógeno , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/química , Hidrógeno/química , Hidroxilación , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA