Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398594

RESUMEN

The 3',5'-dimethoxybenzoin (DMB) system has been widely investigated as a photoremovable protecting group (PRPG) for the elimination of various functional groups and has been applied in many fields. The photolysis of DMB fluoride leads to a highly efficient photocyclization-deprotection reaction, resulting in a high yield of 3',5'-dimethoxybenzofuran (DMBF) in a MeCN solution, while there is a competitive reaction that produces DMB in an aqueous solution. The yield of DMB increased as the volume ratio of water increased. To understand the solvent effect of the photolysis of selected DMB-based compounds, a combination of femtosecond to nanosecond transient absorption spectroscopies (fs-TA and ns-TA), nanosecond time-resolved resonance Raman spectroscopy (ns-TR3) and quantum chemical calculation was employed to study the photophysical and photochemical reaction mechanisms of DMB fluoride in different solutions. Facilitated by the bichromophoric nature of DMB fluoride with electron-donating and -withdrawing chromophores, the cyclized intermediates could be found in a pure MeCN solution. The deprotection of a cyclic biradical intermediate results in the simultaneous formation of DMBF and a cyclic cation species. On the other hand, in aqueous solution, fs-TA experiments revealed that α-keto cations could be observed after excitation directly, which could easily produce the DMB through the addition of a hydroxyl within 8.7 ps. This work provides comprehensive photo-deactivation mechanisms of DMB fluoride in MeCN and aqueous conditions and provides critical insights regarding the biomedical application of DMB-based PRPG compounds.

2.
J Am Chem Soc ; 144(17): 7588-7593, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442033

RESUMEN

As a strategy to design stable but highly reactive metal nitrido species, we have synthesized a manganese(V) nitrido complex bearing a bulky corrole ligand, [MnV(N)(TTPPC)]- (1, TTPPC is the trianion of 5,10,15-Tris(2,4,6-triphenylphenyl)corrole). Complex 1 is readily oxidized by 1 equiv of Cp2Fe+ to give the neutral complex 2, which can be further oxidized by 1 equiv of [(p-Br-C6H4)3N•+][B(C6F5)4] to afford the cationic complex 3. All three complexes are stable in the solid state and in CH2Cl2 solution, and their molecular structures have been determined by X-ray crystallography. Spectroscopic and theoretical studies indicate that complexes 2 and 3 are best formulated as Mn(V) nitrido π-cation corrole [MnV(N)(TTPPC+•)] and Mn(V) nitrido π-dication corrole [MnV(N)(TTPPC2+)]+, respectively. Complex 3 is the most reactive N atom transfer reagent among isolated nitrido complexes; it reacts with PPh3 and styrene with second-order rate constants of 2.12 × 105 and 1.95 × 10-2 M-1 s-1, respectively, which are >107 faster than that of 2.


Asunto(s)
Manganeso , Porfirinas , Electrones , Iones , Ligandos , Manganeso/química , Porfirinas/química
3.
Chem Res Toxicol ; 32(4): 613-620, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30724062

RESUMEN

Naproxen is a nonsteroidal anti-inflammatory drug that exhibits phototoxic side effects in humans, but its mechanism of phototoxicity is ambiguous. To uncover photophysical and photochemical reaction processes of naproxen, femtosecond to nanosecond transient absorption spectroscopies were employed to directly detect excited and transient states of naproxen upon UV irradiation in pure acetonitrile, acetonitrile:water 1:1, and acetonitrile:PBS 1:1 solutions. The transient absorption data together with time-dependent density functional theory analysis-predicted absorption spectra of selected intermediates were integrated to elucidate photochemical mechanisms for reactions of naproxen in different solutions. Femtosecond transient absorption results demonstrated that naproxen has two different photochemical pathways at the early delay time before the formation of final products in various solutions. In a pure acetonitrile solvent, naproxen undergoes charge transfer to solvent to generate a radical cation intermediate, which decarboxylates to generate a radical 2B intermediate. While in an acetonitrile:PBS 1:1 solution, naproxen predominantly deprotonates first and is promoted to the singlet exited state (1NPX-), which undergoes intersystem crossing to give rise to the lowest-lying triplet states (T1). T1 then undergoes decarboxylation reaction and produces a radical 2B species. Kinetic characterization of these processes reveals that the decarboxylation reaction in an acetonitrile:PBS 1:1 solution is faster than that in a pure acetonitrile solvent. Deep studies on photophysical and photochemical processes of NPX will aid us to better understand the toxicology mechanisms associated with NPX in different conditions.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Rayos Láser , Naproxeno/química , Fotólisis , Estructura Molecular , Procesos Fotoquímicos , Factores de Tiempo , Rayos Ultravioleta
4.
Int J Mol Sci ; 20(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694248

RESUMEN

Nitrenium ions are common reactive intermediates with high activities towards some biological nucleophiles. In this paper, we employed femtosecond transient absorption (fs-TA) and nanosecond transient absorption (ns-TA) as well as nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy and density function theory (DFT) calculations to study the spectroscopic properties of the N(4,4'-dibromodiphenylamino)-2,4,6-trimethylpyridinium BF4- salt (1) in an acidic aqueous solution. Efficient cleavage of the N-N bond (4 ps) to form the N,N-di(4-bromophenyl)nitrenium ion (DN) was also observed in the acidic aqueous solution. As a result, the dication intermediate 4 appears more likely to be produced after abstracting a proton for the nitrenium ion DN in the acid solution first, followed by an electron abstraction to form the radical cation intermediate 3. These new and more extensive time-resolved spectroscopic data will be useful to help to develop an improved understanding of the identity, nature, and properties of nitrenium ions involved in reactions under acidic aqueous conditions.


Asunto(s)
Derivados del Benceno/química , Imidas/química , Ácidos/química , Teoría Funcional de la Densidad , Halogenación , Iones/química , Modelos Moleculares , Espectrometría Raman/métodos , Agua/química
5.
ACS Phys Chem Au ; 3(2): 181-189, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968447

RESUMEN

Excited-state intramolecular proton transfer (ESIPT) is of great importance due to the large Stokes shift emission that can be observed in some ESIPT molecules. Although steady-state spectroscopies have been employed to study the properties of some ESIPT molecules, their excited-state dynamics have not been examined directly with time-resolved spectroscopy methods yet for a number of systems. Here, an in-depth investigation of the solvent effects on the excited-state dynamics of two prototypical ESIPT molecules, 2-(2'-hydroxyphenyl)-benzoxazole (HBO) and 2-(2'-hydroxynaphthalenyl)-benzoxazole (NAP), have been accomplished by using femtosecond time-resolved fluorescence and transient absorption spectroscopies. Solvent effects affect the excited-state dynamics of HBO more significantly than that of NAP. Particularly in the presence of water, the photodynamics pathways of HBO are changed, while only small changes can be found in NAP. An ultrafast ESIPT process that occurs within our instrumental response is observed for HBO, and this is followed by an isomerization process in ACN solution. However, in aqueous solution, the obtained syn-keto* after ESIPT can be solvated by water in about 3.0 ps, and the isomerization process is totally inhibited for HBO. The mechanism of NAP is different from HBO and is determined to be a two-step excited-state proton transfer process. Upon photoexcitation, NAP is deprotonated first in the excited state to generate the anion*, which can transfer to the syn-keto* form followed by an isomerization process.

6.
Photochem Photobiol ; 98(2): 347-353, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34812490

RESUMEN

The photolysis reactions of (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ)-caged amines have been investigated using time-resolved spectroscopy methods. Unexpectedly, an unconventional Hofmann-Martius rearrangement reaction with high yield and regioselectivity occurred during the photolysis of some CyHQ-protected dialkylanilines (such as compounds 1a and 2a). To have more insights into the mechanism of this unexpected photorearrangement reaction, we characterized the reaction intermediates directly using time-resolved spectroscopy. Our new results showed that the anionic form of compound 1a was photoexcited to the singlet excited state, then a heterolytic cleavage of the C-N bond took place to give CyHQ+ and the corresponding aniline. Thereafter, the recombined intermediate 6 was found to appear in about 19.7 and 44.3 ps for 1a (A) and 2a (A), respectively, before the generation of an ortho-substituted aniline (1b and 2b) via the excited-state deprotonation of 6. Thus, a logical photodynamic mechanism of this photoinduced Hofmann-Martius rearrangement reaction was deduced. This new insight into the reaction mechanisms may be helpful for the design of novel related photoactivatable aniline molecules and for understanding other similar photorearrangement reaction mechanisms.


Asunto(s)
Quinolinas , Aminas , Compuestos de Anilina/química , Fotólisis , Análisis Espectral
7.
Nat Commun ; 13(1): 3458, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710806

RESUMEN

Nitrenium ions are important reactive intermediates in both chemistry and biology. Although singlet nitrenium ions are well-characterized by direct methods, the triplet states of nitrenium ions have never been directly detected. Here, we find that the excited state of the photoprecursor partitions between heterolysis to generate the singlet nitrenium ion and intersystem crossing (ISC) followed by a spontaneous heterolysis process to generate the triplet p-iodophenylnitrenium ion (np). The triplet nitrenium ion undergoes ISC to generate the ground singlet state, which ultimately undergoes proton and electron transfer to generate a long-lived radical cation that further generates the reduced p-iodoaniline. Ab Initio calculations were performed to map out the potential energy surfaces to better understand the excited state reactivity channels show that an energetically-accessible singlet-triplet crossing lies along the N-N stretch coordinate and that the excited triplet state is unbound and spontaneously eliminates ammonia to generate the triplet nitrenium ion. These results give a clearer picture of the photophysical properties and reactivity of two different spin states of a phenylnitrenium ion and provide the first direct glimpse of a triplet nitrenium ion.


Asunto(s)
Iones , Transporte de Electrón
8.
J Phys Chem B ; 126(45): 9388-9398, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36331406

RESUMEN

The photophysical and photochemical reaction pathways of ortho-methylbenzophenone (o-MeBP) in different solutions were investigated by employing femtosecond to nanosecond transient absorption and nanosecond time-resolved resonance Raman spectroscopy methods. In pure acetonitrile, neutral or pH 1 aqueous solutions, o-MeBP exhibit similar excited-state evolutions upon excitation in which o-MeBP will experience excitation to an excited state then undergo intersystem crossing and solvent arrangement followed by 1,5 hydrogen atom transfer processes to form the first singlet excited state, triplet state (n, π*), biradical intermediates, and enol form transients, respectively. However, in a pH 0 acidic solution, the protonation of o-MeBP will form the cation biradical intermediate that facilitates radical coupling to generate a benzocyclobutanol product, which causes a dramatic reduction of the lifetime of the enol form transients. In contrast, in sodium bicarbonate solution, the biradical intermediate may be quenched by the bicarbonate ion to construct a C-C bond and form the carboxylic acid that causes a fast decay of biradical intermediate. These results demonstrate that the photophysical and photochemical reaction pathways of o-MeBP are pH-dependent in aqueous solution which may be very useful for the capture of CO2 capture by photoexcitation of aromatic ketones.


Asunto(s)
Espectrometría Raman , Agua , Agua/química , Solventes
9.
J Phys Chem Lett ; 12(44): 10927-10935, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34734732

RESUMEN

Newly designed push-pull ligands (L1 and L2) with bithiophene (bth) as a donor and phenazine (phz) or quinoxalino[2,3-b]quinoxaline (qxq) as acceptors were synthesized and also incorporated with a bipyridyl Ru(II) complex to give Ru1 and Ru2, respectively. The ultrafast photophysical dynamics of the ligand and their respective Ru(II) complexes were well-characterized using time-resolved spectroscopies and quantum chemical calculations. Photoinduced charger transfer (CT) and intersystem crossing (ISC) processes were directly observed for L1 and L2. In addition, the interplay of three different triplet excited states was directly observed in the related Ru(II) complexes. The lowest-lying triplet excited states of the ligands and their respective Ru(II) complexes were both attributed to the CT transitions from donor (bth) to acceptor (phz or qxq) and result in 3ICT (intramolecular charge transfer) and 3ILCT (intraligand charge transfer) excited states, respectively. The lifetimes of the lowest-lying triplet excited states of L1, L2, Ru1, and Ru2 were measured to be 21.3, 50.4, 2.75, and 4.16 µs, respectively.

10.
J Phys Chem B ; 125(47): 12981-12989, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797676

RESUMEN

Excited state intramolecular proton transfer (ESIPT) has drawn much attention for its important applications in a variety of areas. Here, the steady-state and time-resolved absorption spectroscopic experiments as well as DFT/TD-DFT calculations are employed to study the photophysical properties and photochemical reaction mechanisms of 2-(2'-hydroxyphenyl) benzoxazole (HBO) and selected derivatives (compounds 1-3). Because of their larger π-conjugation framework, compounds 1-3 display red-shifted absorbance but blue-shifted fluorescence compared with HBO. A fast ESIPT process is observed directly for HBO while compound 3 has an enol/keto equilibrium type of ESIPT that exhibits dual emission. Interestingly, only the emission of the enol form is observed for compounds 1 and 2 which suggests that the ESIPT process is strongly inhibited. These results indicate the decoration with electron-withdrawing groups such as thiadiazol and pyrazine on the hydroxyphenyl ring (compounds 1 and 2) apparently suppresses the proton-transfer processes in their excited states. Whereas the ESIPT process is rarely increased for compound 3 that modified with the phenanthrol ring, because the effective conjugation is reduced for compound 3 compared with HBO. The work here provides fundamental insights that may be useful for designing novel ESIPT molecules in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA