Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(29): 11869-11880, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38982936

RESUMEN

Multimodal imaging analyses of dosed tissue samples can provide more comprehensive insights into the effects of a therapeutically active compound on a target tissue compared to single-modal imaging. For example, simultaneous spatial mapping of pharmaceutical compounds and endogenous macromolecule receptors is difficult to achieve in a single imaging experiment. Herein, we present a multimodal workflow combining imaging mass spectrometry with immunohistochemistry (IHC) fluorescence imaging and brightfield microscopy imaging. Imaging mass spectrometry enables direct mapping of pharmaceutical compounds and metabolites, IHC fluorescence imaging can visualize large proteins, and brightfield microscopy imaging provides tissue morphology information. Single-cell resolution images are generally difficult to acquire using imaging mass spectrometry but are readily acquired with IHC fluorescence and brightfield microscopy imaging. Spatial sharpening of mass spectrometry images would thus allow for higher fidelity coregistration with other higher-resolution microscopy images. Imaging mass spectrometry spatial resolution can be predicted to a finer value via a computational image fusion workflow, which models the relationship between the intensity values in the mass spectrometry image and the features of a high-spatial resolution microscopy image. As a proof of concept, our multimodal workflow was applied to brain tissue extracted from a Sprague-Dawley rat dosed with a kratom alkaloid, corynantheidine. Four candidate mathematical models, including linear regression, partial least-squares regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN), were tested. The random forest and 2-D CNN models most accurately predicted the intensity values at each pixel as well as the overall patterns of the mass spectrometry images, while also providing the best spatial resolution enhancements. Herein, image fusion enabled predicted mass spectrometry images of corynantheidine, GABA, and glutamine to approximately 2.5 µm spatial resolutions, a significant improvement compared to the original images acquired at 25 µm spatial resolution. The predicted mass spectrometry images were then coregistered with an H&E image and IHC fluorescence image of the µ-opioid receptor to assess colocalization of corynantheidine with brain cells. Our study also provides insights into the different evaluation parameters to consider when utilizing image fusion for biological applications.


Asunto(s)
Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ratas , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Flujo de Trabajo , Imagen Multimodal/métodos , Microscopía/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Inmunohistoquímica
2.
Anal Chem ; 95(42): 15707-15715, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37818979

RESUMEN

The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) sn-isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of sn-isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates sn-specific fragment ions allowing for the assignment of the sn-positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of sn-isomers at every pixel. The localized relative abundances of sn-isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.


Asunto(s)
Electrones , Fosfatidilcolinas , Ratas , Animales , Iones/química , Encéfalo , Carbono
3.
Anal Chem ; 95(48): 17766-17775, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37991720

RESUMEN

Accurate structural identification of lipids in imaging mass spectrometry is critical to properly contextualizing spatial distributions with tissue biochemistry. Gas-phase charge inversion ion/ion reactions alter the ion type prior to dissociation to allow for more structurally informative fragmentation and improve lipid identification at the isomeric level. In this work, infrared multiphoton dissociation (IRMPD) was interfaced with a commercial hybrid Qh-FT-ICR mass spectrometer to enable the rapid fragmentation of gas-phase charge inversion ion/ion reaction products at every pixel in imaging mass spectrometry experiments. An ion/ion reaction between phosphatidylcholine (PC) monocations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) and 1,4-phenylenediproprionic acid reagent dianions generated via electrospray ionization (ESI) followed by IRMPD of the resulting product ion complex produces selective fatty acyl chain cleavages indicative of fatty acyl carbon compositions in the lipid. Ion/ion reaction images using this workflow allow for mapping of the relative spatial distribution of multiple PC isomers under a single sum composition lipid identification. Lipid isomers display significantly different relative spatial distributions within rat brain tissue, highlighting the importance of resolving isomers in imaging mass spectrometry experiments.


Asunto(s)
Carbono , Fosfatidilcolinas , Animales , Ratas , Fosfatidilcolinas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Ionización de Electrospray/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38954826

RESUMEN

We have recently developed a charge inversion ion/ion reaction to selectively derivatize phosphatidylserine lipids via gas-phase Schiff base formation. This tandem mass spectrometry (MS/MS) workflow enables the separation and detection of isobaric lipids in imaging mass spectrometry, but the images acquired using this workflow are limited to relatively poor spatial resolutions due to the current time and limit of detection requirements for these ion/ion reaction imaging mass spectrometry experiments. This trade-off between chemical specificity and spatial resolution can be overcome by using computational image fusion, which combines complementary information from multiple images. Herein, we demonstrate a proof-of-concept workflow that fuses a low spatial resolution (i.e., 125 µm) ion/ion reaction product ion image with higher spatial resolution (i.e., 25 µm) ion images from a full scan experiment performed using the same tissue section, which results in a predicted ion/ion reaction product ion image with a 5-fold improvement in spatial resolution. Linear regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN) predictive models were tested for this workflow. Linear regression and 2D CNN models proved optimal for predicted ion/ion images of PS 40:6 and SHexCer d38:1, respectively.

5.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559145

RESUMEN

Multi-modal imaging analyses of dosed tissue samples can provide more comprehensive insight into the effects of a therapeutically active compound on a target tissue compared to single-modal imaging. For example, simultaneous spatial mapping of pharmaceutical compounds and endogenous macromolecule receptors is difficult to achieve in a single imaging experiment. Herein, we present a multi-modal workflow combining imaging mass spectrometry with immunohistochemistry (IHC) fluorescence imaging and brightfield microscopy imaging. Imaging mass spectrometry enables direct mapping of pharmaceutical compounds and metabolites, IHC fluorescence imaging can visualize large proteins, and brightfield microscopy imaging provides tissue morphology information. Single-cell resolution images are generally difficult to acquire using imaging mass spectrometry, but are readily acquired with IHC fluorescence and brightfield microscopy imaging. Spatial sharpening of mass spectrometry images would thus allow for higher fidelity co-registration with higher resolution microscopy images. Imaging mass spectrometry spatial resolution can be predicted to a finer value via a computational image fusion workflow, which models the relationship between the intensity values in the mass spectrometry image and the features of a high spatial resolution microscopy image. As a proof of concept, our multi-modal workflow was applied to brain tissue extracted from a Sprague Dawley rat dosed with a kratom alkaloid, corynantheidine. Four candidate mathematical models including linear regression, partial least squares regression (PLS), random forest regression, and two-dimensional convolutional neural network (2-D CNN), were tested. The random forest and 2-D CNN models most accurately predicted the intensity values at each pixel as well as the overall patterns of the mass spectrometry images, while also providing the best spatial resolution enhancements. Herein, image fusion enabled predicted mass spectrometry images of corynantheidine, GABA, and glutamine to approximately 2.5 µm spatial resolutions, a significant improvement compared to the original images acquired at 25 µm spatial resolution. The predicted mass spectrometry images were then co-registered with an H&E image and IHC fluorescence image of the µ-opioid receptor to assess co-localization of corynantheidine with brain cells. Our study also provides insight into the different evaluation parameters to consider when utilizing image fusion for biological applications.

6.
Talanta ; 274: 125923, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569366

RESUMEN

Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.


Asunto(s)
Alcaloides , Encéfalo , Mitragyna , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Mitragyna/química , Ratas , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Alcaloides/farmacocinética , Alcaloides/análisis , Alcaloides/química , Masculino , Iones/química , Distribución Tisular , Ratas Sprague-Dawley
7.
J Mass Spectrom ; 58(7): e4958, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37431164

RESUMEN

Quantification of pharmaceutical compounds using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an alternative to traditional liquid chromatography (LC)-MS techniques. Benefits of MALDI-based approaches include rapid analysis times for liquid samples and imaging mass spectrometry capabilities for tissue samples. As in most quantification experiments, the use of internal standards can compensate for spot-to-spot and shot-to-shot variability associated with MALDI sampling. However, the lack of chromatographic separation in traditional MALDI analyses results in diminished peak capacity due to the chemical noise background, which can be detrimental to the dynamic range and limit of detection of these approaches. These issues can be mitigated by using a hybrid mass spectrometer equipped with a quadrupole mass filter (QMF) that can be used to fractionate ions based on their mass-to-charge ratios. When the masses of the analytes and internal standards are sufficiently disparate in mass, it can be beneficial to effect multiple narrow mass isolation windows using the QMF, as opposed to a single wide mass isolation window, to minimize chemical noise while allowing for internal standard normalization. Herein, we demonstrate a MALDI MS quantification workflow incorporating multiple sequential mass isolation windows enabled on a QMF, which divides the total number of MALDI laser shots into multiple segments (i.e., one segment for each mass isolation window). This approach is illustrated through the quantitative analysis of the pharmaceutical compound enalapril in human plasma samples as well as the simultaneous quantification of three pharmaceutical compounds (enalapril, ramipril, and verapamil). Results show a decrease in the limit of detection, relative standard deviations below 10%, and accuracy above 85% for drug quantification using multiple mass isolation windows. This approach has also been applied to the quantification of enalapril in brain tissue from a rat dosed in vitro. The average concentration of enalapril determined by imaging mass spectrometry is in agreement with the concentration determined by LC-MS, giving an accuracy of 104%.


Asunto(s)
Encéfalo , Enalapril , Humanos , Animales , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Iones , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA