Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 273: 116161, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430581

RESUMEN

Di(2-ethylhexyl) phthalate (DEHP) is a worldwide common plasticizer. Nevertheless, DEHP is easily leached out to the environment due to the lack of covalent bonds with plastic. High dose of DEHP exposure is often observed in hemodialysis patients because of the continual usage of plastic medical devices. Although the liver is the major organ that catabolizes DEHP, the impact of long-term DEHP exposure on the sensitivity of liver cancer to chemotherapy remains unclear. In this study, we established long-term DEHP-exposed hepatocellular carcinoma (HCC) cells and two NOD/SCID mice models to investigate the effects and the underlying mechanisms of long-term DEHP exposure on chemosensitivity of HCC. The results showed long-term DEHP exposure potentially increased epithelial-mesenchymal transition (EMT) in HCC cells. Next generation sequencing showed that long-term DEHP exposure increased cell adhesion/migratory related genes expression and blunted sorafenib treatment induced genes alterations. Long-term exposure to DEHP reduced the sensitivity of HCC cells to sorafenib-induced anti-migratory effect by enhancing the EMT transcription factors (slug, twist, and ZEB1) and mesenchymal protein (vimentin) expression. In NOD/SCID mice model, we showed that long-term DEHP-exposed HCC cells exhibited higher growth rate. Regarding the anti-HCC effects of sorafenib, subcutaneous HuH7 tumor grew slowly in sorafenib-treated mice. Nonetheless, the anti-tumor growth effect of sorafenib was not observed in long-term DEHP-exposed mice. Higher mesenchymal markers and proliferating cell nuclear antigen (PCNA) expression were found in sorafenib-treated long-term DEHP-exposed mice. In conclusion, long-term DEHP exposure promoted migratory activity in HCC cells and decreased sorafenib sensitivity in tumor-bearing mice.


Asunto(s)
Carcinoma Hepatocelular , Dietilhexil Ftalato , Neoplasias Hepáticas , Ácidos Ftálicos , Humanos , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Dietilhexil Ftalato/toxicidad , Ratones SCID , Ratones Endogámicos NOD , Resultado del Tratamiento
2.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432116

RESUMEN

Primary liver cancer is the fifth leading death of cancers in men, and hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancer cases. Sorafenib is a first-line drug for advanced-stage HCC patients. Sorafenib is a multi-target kinase inhibitor that blocks tumor cell proliferation and angiogenesis. Despite sorafenib treatment extending survival, some patients experience side effects, and sorafenib resistance does occur. 3-Hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketogenesis, which synthesizes the ketone bodies, ß-hydroxybutyrate (ß-HB) and acetoacetate (AcAc). ß-HB is the most abundant ketone body which is present in a 4:1 ratio compared to AcAc. Recently, ketone body treatment was found to have therapeutic effects against many cancers by causing metabolic alternations and cancer cell apoptosis. Our previous publication showed that HMGCS2 downregulation-mediated ketone body reduction promoted HCC clinicopathological progression through regulating c-Myc/cyclin D1 and caspase-dependent signaling. However, whether HMGCS2-regulated ketone body production alters the sensitivity of human HCC to sorafenib treatment remains unclear. In this study, we showed that HMGCS2 downregulation enhanced the proliferative ability and attenuated the cytotoxic effects of sorafenib by activating expressions of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-P38, and p-AKT. In contrast, HMGCS2 overexpression decreased cell proliferation and enhanced the cytotoxic effects of sorafenib in HCC cells by inhibiting ERK activation. Furthermore, we showed that knockdown HMGCS2 exhibited the potential migratory ability, as well as decreasing zonula occludens protein (ZO)-1 and increasing c-Myc expression in both sorafenib-treated Huh7 and HepG2 cells. Although HMGCS2 overexpression did not alter the migratory effect, expressions of ZO-1, c-Myc, and N-cadherin decreased in sorafenib-treated HMGCS2-overexpressing HCC cells. Finally, we investigated whether ketone treatment influences sorafenib sensitivity. We showed that ß-HB pretreatment decreased cell proliferation and enhanced antiproliferative effect of sorafenib in both Huh7 and HepG2 cells. In conclusion, this study defined the impacts of HMGCS2 expression and ketone body treatment on influencing the sorafenib sensitivity of liver cancer cells.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Cetonas/uso terapéutico , Neoplasias Hepáticas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/uso terapéutico , Quinasas MAP Reguladas por Señal Extracelular , Resultado del Tratamiento
3.
Glycobiology ; 31(5): 624-635, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33403394

RESUMEN

Cell surface glycosylation has been known as an important modification process that can be targeted and manipulated by malignant cells to escape from host immunosurveillance. We previously showed that the blood group branched I antigen on the leukemia cell surface can regulate the cell susceptibility against natural killer (NK) cell-mediated cytotoxicity through interfering target-NK interaction. In this work, we first identified N-linkage as the major glycosylation linkage type for branched I glycan formation on leukemia cells, and this linkage was responsible for cell sensitivity against therapeutic NK-92MI targeting. Secondly, by examining different leukemia cell surface death receptors, we showed death receptor Fas had highest expressions in both Raji and TF-1a cells. Mutations on two Fas extracellular N-linkage sites (118 and 136) for glycosylation impaired activation of Fas-mediated apoptosis during NK-92MI cytotoxicity. Last, we found that the surface I antigen expression levels enable leukemia cells to respond differently against NK-92MI targeting. In low I antigen expressing K-562 cell, reduction of I antigen presence greatly reduced leukemia cell susceptibility against NK-92MI targeting. But in other high I antigen expressing leukemia cells, similar reduction in I antigen expression did not affect cell susceptibility.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/inmunología , Receptor fas/inmunología , Apoptosis/inmunología , Células Cultivadas , Glicosilación , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Mutación , Receptor fas/genética
4.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805788

RESUMEN

Persistent chronic liver diseases increase the scar formation and extracellular matrix accumulation that further progress to liver fibrosis and cirrhosis. Nevertheless, there is no antifibrotic therapy to date. The ketogenic diet is composed of high fat, moderate to low-protein, and very low carbohydrate content. It is mainly used in epilepsy and Alzheimer's disease. However, the effects of the ketogenic diet on liver fibrosis remains unknown. Through ketogenic diet consumption, ß-hydroxybutyrate (bHB) and acetoacetate (AcAc) are two ketone bodies that are mainly produced in the liver. It is reported that bHB and AcAc treatment decreases cancer cell proliferation and promotes apoptosis. However, the influence of bHB and AcAc in hepatic stellate cell (HSC) activation and liver fibrosis are still unclear. Therefore, this study aimed to investigate the effect of the ketogenic diet and ketone bodies in affecting liver fibrosis progression. Our study revealed that feeding a high-fat ketogenic diet increased cholesterol accumulation in the liver, which further enhanced the carbon tetrachloride (CCl4)- and thioacetamide (TAA)-induced liver fibrosis. In addition, more severe liver inflammation and the loss of hepatic antioxidant and detoxification ability were also found in ketogenic diet-fed fibrotic mouse groups. However, the treatment with ketone bodies (bHB and AcAc) did not suppress transforming growth factor-ß (TGF-ß)-induced HSC activation, platelet-derived growth factor (PDGF)-BB-triggered proliferation, and the severity of CCl4-induced liver fibrosis in mice. In conclusion, our study demonstrated that feeding a high-fat ketogenic diet may trigger severe steatohepatitis and thereby promote liver fibrosis progression. Since a different ketogenic diet composition may exert different metabolic effects, more evidence is necessary to clarify the effects of a ketogenic diet on disease treatment.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Acetoacetatos/farmacología , Colesterol/biosíntesis , Dieta Cetogénica/efectos adversos , Cirrosis Hepática/metabolismo , Hígado/efectos de los fármacos , Ácido 3-Hidroxibutírico/biosíntesis , Acetoacetatos/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Becaplermina/farmacología , Tetracloruro de Carbono/administración & dosificación , Catalasa/genética , Catalasa/metabolismo , Proliferación Celular/efectos de los fármacos , Colesterol/sangre , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Desmina/genética , Desmina/metabolismo , Progresión de la Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Índice de Severidad de la Enfermedad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Tioacetamida/administración & dosificación , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/farmacología
5.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445279

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor in the world. Sorafenib is the first-line drug for patients with advanced HCC. However, long-term treatment with sorafenib often results in reduced sensitivity of tumor cells to the drug, leading to acquired resistance. Identifying biomarkers which can predict the response to sorafenib treatment may represent a clinical challenge in the personalized treatment era. Niemann-Pick type C2 (NPC2), a secretory glycoprotein, plays an important role in regulating intracellular free cholesterol homeostasis. In HCC patients, downregulation of hepatic NPC2 is correlated with poor clinical pathological features through regulating mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation. This study aimed to investigate the roles of secretory NPC2-mediated free cholesterol levels as biomarkers when undergoing sorafenib treatment and evaluate its impact on acquired sorafenib resistance in HCC cells. Herein, we showed that NPC2 downregulation and free cholesterol accumulation weakened sorafenib's efficacy through enhancing MAPK/AKT signaling in HCC cells. Meanwhile, NPC2 overexpression slightly enhanced the sorafenib-induced cytotoxic effect. Compared to normal diet feeding, mice fed a high-cholesterol diet had much higher tumor growth rates, whereas treatment with the free cholesterol-lowering agent, hydroxypropyl-ß-cyclodextrin, enhanced sorafenib's tumor-inhibiting ability. In addition, sorafenib treatment induced higher NPC2 secretion, which was mediated by inhibition of the Ras/Raf/MAPK kinase (MEK)/ERK signaling pathway in HCC cells. In both acquired sorafenib-resistant cell and xenograft models, NPC2 and free cholesterol secretion were increased in culture supernatant and serum samples. In conclusion, NPC2-mediated free cholesterol secretion may represent a candidate biomarker for the likelihood of HCC cells developing resistance to sorafenib.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Colesterol/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Sorafenib/farmacología , Proteínas de Transporte Vesicular/metabolismo , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Femenino , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID
6.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899775

RESUMEN

Cancer stem cells (CSCs) are considered to be the origin of ovarian cancer (OC) development, recurrence, and chemoresistance. We investigated changes in expression levels of the CSC biomarker, cluster of differentiation 133 (CD133), from primary OC cell lines to induction of CSC-spheres in an attempt to explore the mechanisms related to modulation of stemness, drug resistance, and tumorigenesis in CSCs, thus facilitating the search for new therapeutics for OC. The effect of CD133 overexpression on the induction of CSC properties was evaluated by sphere-forming assays, RT-qPCR, flow cytometry, cell viability assays, and in vivo xenograft experiments. Moreover, the potential signaling molecules that participate in CD133 maintenance of stemness were screened by RNA-sequencing. CD133 expression was upregulated during OCSC induction and chemotherapeutic drug treatment over time, which increased the expressions of stemness-related markers (SOX2, OCT4, and Nanog). CD133 overexpression also promoted tumorigenesis in NOD/SCID mice. Several signalings were controlled by CD133 spheres, including extracellular matrix receptor interactions, chemokine signaling, and Wnt signaling, all of which promote cell survival and cell cycle progression. Our findings suggest that CD133 possesses the ability to maintain functional stemness and tumorigenesis of OCSCs by promoting cell survival signaling and may serve as a potential target for stem cell-targeted therapy of OC.


Asunto(s)
Antígeno AC133/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/metabolismo , Antígeno AC133/fisiología , Animales , Carcinogénesis/patología , Carcinoma/patología , Carcinoma Epitelial de Ovario/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/fisiología , Organoides/metabolismo , Neoplasias Ováricas/genética , Transducción de Señal/genética
7.
Molecules ; 25(12)2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575795

RESUMEN

Hepatocellular carcinoma (HCC) is a common cause of cancer death worldwide. Sorafenib, a multikinase inhibitor, is the first-line drug approved by the Food and Drug Administration (FDA) for the treatment of patients with advanced HCC. However, most patients who continuously receive sorafenib may acquire resistance to this drug. Therefore, it is important to develop a new compound to treat liver cancer and sorafenib-resistant liver cancer. Barbituric acid derivatives have been used as antiasthmatic drugs in the clinic. We previously reported that a novel barbituric acid derivative inhibited carbon tetrachloride-induced liver fibrosis in mice, but its effects on liver cancer remain unknown. Thus, the purpose of this study was to investigate the antitumor effect of barbituric acid derivatives on HCC cells and sorafenib-resistant HCC cells (HCC-SRs). Our findings reveal that one of the barbituric acid derivatives, BA-5, significantly inhibited HCC and HCC-SR cell viability in a dose- and time-dependent manner. Therefore, compound BA-5 was selected for further experiments. Western blot data revealed that BA-5 treatment decreased the phosphorylation of AKT/p70s6k without affecting the MAPK pathway and increased cleaved PARP and cleaved caspase-7 in both HCC and HCC-SR cells. Since epithelial-mesenchymal transition plays a significant role in regulating cancer invasion and migration, we used the wound healing assay to evaluate the antimigratory effect of compound BA-5. The results showed that BA-5 treatment inhibited HCC and HCC-SR cell migration and reduced Vimentin protein expression. These results were confirmed by microarray analysis showing that BA-5 treatment influenced cancer cell motility and growth-related pathways. In the xenograft mouse model experiment, BA-5 administration significantly inhibited HCC cancer cell growth in mice. Furthermore, the combination of BA-5 with a low dose of regorafenib synergistically inhibited HCC-SR cell proliferation. In conclusion, our study showed that the barbituric acid derivative BA-5 is a new candidate for HCC and sorafenib-resistant HCC therapy.


Asunto(s)
Antineoplásicos/farmacología , Barbitúricos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/efectos de los fármacos , Barbitúricos/administración & dosificación , Barbitúricos/química , Carcinoma Hepatocelular/patología , Caspasa 7/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Compuestos de Fenilurea/administración & dosificación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Piridinas/administración & dosificación , Vimentina/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845699

RESUMEN

γδ-T-cells have attracted attention because of their potent cytotoxicity towards tumors. Most γδ-T-cells become activated via a major histocompatibility complex (MHC)-independent pathway by the interaction of their receptor, Natural Killer Group 2 Member D (NKG2D) with the tumor-specific NKG2D ligands, including MHC class I-related chain A/B (MICA/B) and UL16-binding proteins (ULBPs), to kill tumor cells. However, despite their potent antitumor effects, the treatment protocols specifically targeting ovarian tumors require further improvements. Ovarian cancer is one of the most lethal and challenging female malignancies worldwide because of delayed diagnoses and resistance to traditional chemotherapy. In this study, we successfully enriched and expanded γδ-T-cells up to ~78% from peripheral blood mononuclear cells (PBMCs) with mostly the Vγ9Vδ2-T-cell subtype in the circulation. We showed that expanded γδ-T-cells alone exerted significant cytotoxic activities towards specific epithelial-type OVCAR3 and HTB75 cells, whereas the combination of γδ-T cells and pamidronate (PAM), a kind of aminobisphosphonates (NBPs), showed significantly enhanced cytotoxic activities towards all types of ovarian cancer cells in vitro. Furthermore, in tumor xenografts of immunodeficient NSG mice, γδ-T-cells not only suppressed tumor growth but also completely eradicated preexisting tumors with an initial size of ~5 mm. Thus, we concluded that γδ-T-cells alone possess dramatic cytotoxic activities towards epithelial ovarian cancers both in vitro and in vivo. These results strongly support the potential of clinical immunotherapeutic application of γδ-T-cells to treat this serious female malignancy.


Asunto(s)
Carcinoma Epitelial de Ovario/terapia , Leucocitos Mononucleares/citología , Neoplasias Ováricas/terapia , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/citología , Animales , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Femenino , Humanos , Inmunoterapia Adoptiva , Ratones , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Int J Mol Sci ; 19(4)2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617289

RESUMEN

Altered sialic acid processing that leads to upregulation of cell surface sialylation is recognized as a key change in malignant tissue glycosylation. This cancer-associated hypersialylation directly impacts the signaling interactions between tumor cells and their surrounding microenvironment, especially the interactions mediated by immune cell surface sialic acid-binding immunoglobulin-like lectins (Siglecs) to relay inhibitory signals for cytotoxicity. First, we obtained a Siglec-7neg NK-92MI cell line, NK-92MI-S7N, by separating a group of Siglec-7neg cell population from an eight-month-long-term NK-92MI in vitro culture by fluorescence-activated cell sorting (FACS). The effect of Siglec-7 loss on NK-92MI-S7N cells was characterized by the cell morphology, proliferation, and cytotoxic activity via FACS, MTS assay, cytotoxic assay, and natural killer (NK) degranulation assay. We found the expression levels of Siglec-7 in NK-92MI were negatively correlated with NK cytotoxicity against leukemia cells. This NK-92MI-S7N cell not only shared very similar phenotypes with its parental cells but also possessed a high and sustainable killing activity. Furthermore, this Siglec-7neg NK line was unexpectedly capable of eliminating a NK-92MI-resistant leukemia cell, THP-1, through enhancing the effector-target interaction. In this study, a NK cell line with high and sustainable cytotoxicity was established and this cell may provide a potential application in NK-based treatment for leukemia patients.


Asunto(s)
Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Fenotipo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/deficiencia , Degranulación de la Célula , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Expresión Génica , Humanos , Leucemia/genética , Leucemia/inmunología , Leucemia/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo
10.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874879

RESUMEN

Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-ß1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3ß (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.


Asunto(s)
Proteínas Portadoras/genética , Colesterol/metabolismo , Glicoproteínas/genética , Cirrosis Hepática/genética , Mitocondrias/metabolismo , Becaplermina , Proteínas Portadoras/metabolismo , Proliferación Celular/genética , Proliferación Celular/fisiología , Respiración de la Célula/genética , Colesterol/genética , Regulación de la Expresión Génica/genética , Glicoproteínas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/fisiología , Homeostasis , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Mitocondrias/genética , Mitocondrias/fisiología , Proteínas Proto-Oncogénicas c-sis/genética , Factor de Crecimiento Transformador beta1/genética , Proteínas de Transporte Vesicular
11.
Transfusion ; 57(4): 1040-1051, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28337749

RESUMEN

BACKGROUND: The aberrant glycosylation on proteins and lipids has been implicated in malignant transformations for promoting the tumorigenesis, metastasis, and evasion from the host immunity. The I-branching ß-1,6-N-acetylglucosaminyltransferase, converting the straight i to branched I histo-blood group antigens, reportedly could influence the migration, invasion, and metastasis of solid tumors. STUDY DESIGN AND METHODS: We first chose the highly cytotoxic natural killer (NK)-92MI cells as effector against leukemia for this cell line has been used in several clinical trials. Fluorescence-activated cell sorting and nonradioactive cytotoxicity assay were performed to reexamine the role of NK-activating receptors, their corresponding ligands, and the tumor-associated carbohydrate antigens in this NK-92MI-leukemia in vitro system. The I role on cytotoxic mechanism was further studied especially on the effector-target interactions by cytotoxic analysis and conjugate formation assay. RESULTS: We showed that expression levels of leukemia surface ligands for NK-activating receptors did not positively reflect susceptibility to NK-92MI. Instead, the expression of I antigen on the leukemia cells was found important in mediating the susceptibility to NK targeting by affecting the interaction with effector cells. Furthermore, susceptibility was shown to dramatically increase while overexpressing branched I antigens on the I- cells. By both conjugate and cytotoxicity assay, we revealed that the presence of I antigen on leukemia cells enhanced the interaction with NK-92MI cells, increasing susceptibility to cell-mediated lysis. CONCLUSION: In our system, branched I antigens on the leukemia were involved in the immunosurveillance mediated by NK cells specifically through affecting the effector-target interaction.


Asunto(s)
Antígenos de Neoplasias/inmunología , Sistema del Grupo Sanguíneo I/inmunología , Inmunidad Celular , Células Asesinas Naturales/inmunología , Leucemia/inmunología , Línea Celular Tumoral , Humanos , Células Asesinas Naturales/patología , Leucemia/patología , N-Acetilglucosaminiltransferasas/inmunología , Proteínas de Neoplasias/inmunología
12.
J Biomed Sci ; 23(1): 69, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27716281

RESUMEN

BACKGROUND: Glycine N-methyltransferase (GNMT) is abundantly expressed in the normal liver but is down-regulated in liver cancer tissues. GNMT knockout (Gnmt-/-) mice can spontaneously develop chronic hepatitis, fatty liver, and liver cancer. We previously demonstrated that hepatic GNMT is decreased in high-fat-diet-induced type 2 diabetes mellitus, but its contribution to metabolic syndrome is unclear. Here we show that GNMT modulates key aspects of metabolic syndrome in mice. METHODS: Eleven-week-old Gnmt-/- and wild-type (WT) mice with a C57BL/6 genetic background were used in this study. The metabolic defects of GNMT deficiency were measured by glucose and insulin tolerance tests, lipid homeostasis, gluconeogenesis, and insulin signaling. RESULTS: Gnmt-/- mice, especially females, exhibited glucose intolerance and insulin resistance. However, their body fat and lean mass, food and water intakes, and energy expenditure did not differ from those of WT mice. In addition, glucose-stimulated insulin secretion and insulin-stimulated glucagon secretion were normal in the serum and pancreatic islets of Gnmt-/- mice. Importantly, we found that GNMT deficiency increased lipogenesis and triglycerides in the liver. The elevated triglycerides disrupted the ability of insulin to induce Akt and S6 ribosomal protein phosphorylation, and then triggered insulin resistance and gluconeogenesis in female Gnmt-/- mice. CONCLUSIONS: Our data indicate that hepatic GNMT regulates lipid and glucose homeostasis, and provide insight into the development of insulin resistance through modulating the PI3K/Akt pathway.


Asunto(s)
Gluconeogénesis , Glicina N-Metiltransferasa/deficiencia , Glicina N-Metiltransferasa/genética , Insulina/metabolismo , Hígado/enzimología , Síndrome Metabólico/genética , Transducción de Señal , Animales , Femenino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Transfusion ; 56(11): 2691-2702, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27600951

RESUMEN

BACKGROUND: Phosphorylation status of the transcription factor CCAAT/enhancer binding protein α (C/EBPα) has been demonstrated in a human hematopoietic cell model to regulate the formation of branched I antigen by affecting its binding affinity to the promoter region of the IGnTC gene during erythroid and granulocytic differentiation. STUDY DESIGN AND METHODS: The K-562 cell line was induced to differentiate into red blood cells (RBCs) or granulocytes by sodium butyrate or retinoic acid, respectively, to study the involvement of three MAP kinase pathways in I antigen synthesis. The regulatory effects of the extracellular signal-regulated kinase (ERK)2-Src homology region 2 domain-containing phosphatase 2 (SHP2) pathway on phosphorylation status and binding affinities of C/EBPα as well as the subsequent activation of IGnTC and synthesis of surface I formation were studied in wild-type K-562 cells and in mutant cells that overexpress ERK2 and SHP2. RESULTS: We found that SHP2-ERK2 signaling regulates the phosphorylation status of C/EBPα to alter its binding affinity onto the IGnTC promoter region, thereby activating the synthesis of cell surface I antigen formation during erythropoiesis. CONCLUSION: SHP2-ERK2 signaling acts upstream of C/EBPα as a regulator of cell surface I antigen synthesis. Such regulation is specific for RBC but not for granulocyte differentiation.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Eritropoyesis , Sistema del Grupo Sanguíneo I/biosíntesis , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Humanos , Células K562 , N-Acetilglucosaminiltransferasas/genética , N-Acetilhexosaminiltransferasas , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica
14.
Int J Mol Sci ; 17(7)2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27420058

RESUMEN

In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-ß1 (TGF-ß1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-ß1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-ß1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Glicoproteínas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Animales , Western Blotting , Tetracloruro de Carbono/toxicidad , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Humanos , Técnicas para Inmunoenzimas , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Tioacetamida/toxicidad , Factor de Crecimiento Transformador beta1/farmacología , Proteínas de Transporte Vesicular
15.
Int J Cancer ; 137(6): 1341-51, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25754535

RESUMEN

Primary hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third leading cause of cancer-related death. It is important to identify new targets for early diagnosis and treatment of HCC. Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in HCC tumorigenesis. In this study, we showed that NPC2 is abundantly expressed in normal liver, but is downregulated in human HCC tissues. The patients with NPC2 downregulation expressed much higher α-fetoprotein, multiple tumor type, vascular invasion, later pathological stage and shorter survival rate. Knockdown NPC2 in liver cancer cell lines promote cell proliferation, migration and xenograft tumorigenesis. In contrast, NPC2 overexpression inhibits HuH7 promoted tumor growth. Furthermore, administration of hepatotropic adeno-associated virus 8 (AAV8) delivered NPC2 decreased the inflammatory infiltration, the expression of two early HCC markers-glypican 3 and survivin and suppressed the spontaneous HCC development in mice. To identify the NPC2-dependent mechanism, we emphasized on the status of MAPK/ERK signaling. MEK1/2 inhibitor treatment demonstrated that the expression of NPC2 affected the activation of ERK1/2 but not MEK1/2. In addition, cholesterol trafficking inhibitor treatment did not alter the cell proliferation and the activation of MEK/ERK. In conclusion, our study demonstrates that NPC2 may play an important role in negatively regulate cell proliferation and ERK1/2 activation that were independent of cholesterol accumulation. AAV-NPC2 may thus represent a new treatment strategy for liver cancer.


Asunto(s)
Proteínas Portadoras/genética , Glicoproteínas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Femenino , Células HEK293 , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Tasa de Supervivencia , Proteínas de Transporte Vesicular , alfa-Fetoproteínas/genética
16.
J Formos Med Assoc ; 114(6): 498-503, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26062966

RESUMEN

BACKGROUND/PURPOSE: The decoy receptor 3 (DcR3) is a member of the tumor necrosis factor receptor (TNFR) super-family. It counteracts the biological effects of Fas ligands and inhibits apoptosis. The goals of this study were to understand the associations between serologic DcR3 (sDcR3) levels and different human immunodeficiency virus type 1 (HIV-1) subtypes, as well as the AIDS disease progression. METHODS: Serum samples from 61 HIV/AIDS patients, who had been followed up every 6 months for 3 years, were collected. sDcR3 levels were quantified using an enzyme immunoassay (EIA). RESULTS: The sDcR3 levels in patients with HIV-1 subtype B were significantly higher than those in patients infected with subtype CRF01_AE (p < 0.001). In addition, multivariable linear mixed model analysis demonstrated that HIV-1 subtype B and slow disease progression were associated with higher levels of sDcR3, adjusting for potential predictors (p = 0.0008 and 0.0455, respectively). CONCLUSION: HIV-1-infected cells may gain a survival advantage by activating DcR3, which prevents infected cell detection by the host immune system. These data indicate that the sDcR3 level is a biomarker for AIDS disease progression.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/sangre , Apoptosis , Proteína Ligando Fas/metabolismo , Miembro 6b de Receptores del Factor de Necrosis Tumoral/sangre , Adulto , Biomarcadores , Progresión de la Enfermedad , Femenino , VIH-1/clasificación , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Taiwán , Adulto Joven
17.
J Nutr Biochem ; 125: 109565, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176621

RESUMEN

Various endogenous and exogenous stimuli can result in an inflammatory response and collagen deposition in the liver, which affect liver function and increase the risk of developing liver cirrhosis and cancer. Rice bran, the main by-product of rice milling, contains various nutrients which possess hepatoprotective activities. In this study, we investigated the effects of rice bran on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Mice were fed a rice-bran-containing diet (10% rice bran w/w) or a standard diet with or without an injection of 20% CCl4 to induce liver fibrosis. Our results showed that feeding a rice-bran-containing diet could alleviate CCl4-induced liver damage, collagen deposition, and expressions of fibrosis-related genes, including α-smooth muscle actin (α-SMA), collagen 1a2 (COL1A2), and transforming growth factor-ß (TGF-ß) in liver tissues. Moreover, consumption of rice bran enhanced phase II detoxification and antioxidant gene expressions, including Gsta3, Gstp1, Catalase, SOD1, SOD2, and SOD3. Treatment with γ-oryzanol, the major bioactive compound in rice bran, decreased the sensitivity of hepatic stellate cells (HSCs) to TGF-ß1-induced α-SMA, COL1A2, and phosphorylated smad2 expressions. In conclusion, a rice-bran-containing diet may have beneficial effects on liver fibrogenesis through increased antioxidant and detoxification activities. γ-Oryzanol, the major bioactive compound of rice bran, can inhibit activation of HSCs.


Asunto(s)
Antioxidantes , Oryza , Fenilpropionatos , Animales , Ratones , Antioxidantes/metabolismo , Oryza/metabolismo , Células Estrelladas Hepáticas/metabolismo , Transducción de Señal , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Dieta , Tetracloruro de Carbono/toxicidad
18.
Life Sci ; 336: 122327, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061536

RESUMEN

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, often accompanied by obesity, diabetes, and increased risks of depression and anxiety. Currently, there are no FDA-approved drugs to treat NAFLD and its related systemic symptoms. Previously, we identified a new barbituric acid derivative (BA-5) that expressed effectiveness against fibrosis and drug-resistant hepatocellular carcinoma. AIMS: This study investigated the potential of BA-5 against high-fat diet (HFD)-induced NAFLD and mood disorders in mice. MAIN METHODS: Six-weeks-old male C57BL/6 mice were fed with a 45 % HFD for 8 weeks to induce NAFLD and associated metabolic disorders. Mice were treated with a BA-5 and the therapeutic effects and the underlying molecular mechanisms were investigated. KEY FINDINGS: Administration of BA-5 significantly reduced serum levels of alanine aminotransferase (ALT), low-density lipoprotein (LDL), fatty acids (FA), and triglycerides (TG) in HFD-fed mice. BA-5 treatment decreased expressions of hepatic lipogenesis-related markers (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and ATP-citrate lyase (ACLY)), increased fatty acid oxidation markers (carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA oxidase 1 (ACOX1)), and attenuated hepatic fat accumulation in HFD-fed mice. Moreover, HFD-induced adipocyte size enlargement and activation of lipolysis markers such as phosphorylated (p)-hormone-sensitive lipase (HSL) 565, p-HSL 660, and perilipin were inhibited in BA-5-treated mice. Notably, HFD-induced anxiety- and depression-like behaviors significantly improved in the BA-5 treated group through enhanced anti-inflammatory responses in the hippocampus. SIGNIFICANCE: This study provides new insights into clinical therapeutic strategies of barbituric acid derivatives for HFD-induced NAFLD and associated mood disturbances.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos
19.
Biomed Pharmacother ; 166: 115293, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567069

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor. Although sorafenib and regorafenib have been approved for first-line and second-line treatment, respectively, of patients with advanced HCC, long-term treatment often results in acquired resistance. Given that glycolysis-mediated lactate production can contribute to drug resistance and impair HCC treatment efficacy, we investigated the effects of ketone body treatment on the metabolic shift in sorafenib-resistant HCC cells. We discovered differential expression of 3-hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) and the ketone body D-ß-hydroxybutyrate (ß-HB) in four sorafenib-resistant HCC cell lines. In sorafenib-resistant HCC cells, lower HMGCS2 and ß-HB levels were correlated with more glycolytic alterations and higher lactate production. ß-HB treatment enhanced pyruvate dehydrogenase (PDH) expression and decreased lactate dehydrogenase (LDHA) expression and lactate production in sorafenib-resistant HCC cells. Additionally, ß-HB combined with sorafenib or regorafenib promoted the antiproliferative and antimigratory abilities of sorafenib-resistant HCC cells by inhibiting the B-raf/mitogen-activated protein kinase pathway and mesenchymal N-cadherin-vimentin axis. Although the in vivo ß-HB administration did not affect tumor growth, the expression of proliferative and glycolytic proteins was inhibited in subcutaneous sorafenib-resistant tumors. In conclusion, exogenous ß-HB treatment can reduce lactate production and reverse sorafenib resistance by inducing a glycolytic shift; it can also synergize with regorafenib for treating sorafenib-resistant HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Ácido 3-Hidroxibutírico , Neoplasias Hepáticas/patología , Resistencia a Antineoplásicos , Glucólisis , Lactatos/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
20.
J Nutr Biochem ; 115: 109267, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36641072

RESUMEN

Deep-frying is a common cooking practice worldwide, and after repeated heating's, the oil undergoes various chemical reactions, including hydrolysis, polymerization, lipid oxidation, and the Maillard reaction. Studies have pointed out that oxidized dietary frying oil may cause teratogenesis in mice and increase cancer and cardiovascular risks. The liver is the main organ involved in dietary nutrient catabolism, detoxification, bile production, and lipid metabolism. Nevertheless, the effects of oxidized frying oil exposure on the activation of hepatic stellate cells (HSCs) and liver fibrosis are still unclear. In this study, we showed that exposure to oxidized frying oil enhanced the sensitivity of HSCs to transforming growth factor (TGF)-ß1-induced α-smooth muscle actin (α-SMA), collagen 1a2, collagen 1a1, metalloproteinase-2, and phosphorylated smad2/3 activation. In both carbon tetrachloride (CCl4)- and thioacetamide (TAA)-induced liver fibrosis mouse models, we showed that long-term administration of a 10% fried oil-containing diet significantly upregulated fibrogenesis genes expression and deposition of hepatic collagen. Furthermore, long-term fried oil exposure not only promoted macrophage infiltration and increased inflammatory-related gene expression, but also accumulated excess cholesterol and lipid peroxidation in the liver tissues. In conclusion, our study demonstrated that feeding a fried oil-containing diet may trigger TGF-ß1-induced HSCs activation and thereby promote liver damage and fibrosis progression through enhancing the inflammatory response and lipid peroxidation.


Asunto(s)
Grasas Insaturadas en la Dieta , Células Estrelladas Hepáticas , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Tetracloruro de Carbono/efectos adversos , Tioacetamida/toxicidad , Tioacetamida/metabolismo , Grasas Insaturadas en la Dieta/efectos adversos , Metaloproteinasa 2 de la Matriz/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA