Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ACS Nano ; 18(35): 23991-24003, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39167921

RESUMEN

Achieving a reversible decrease of metabolism and other physiological processes in the whole organism, as occurs in animals that experience torpor or hibernation, could contribute to increased survival after serious injury. Using a Bayesian network tool with transcriptomic data and chemical structure similarity assessments, we predicted that the Alzheimer's disease drug donepezil (DNP) could be a promising candidate for a small molecule drug that might induce a torpor-like state. This was confirmed in a screening study with Xenopus laevis tadpoles, a nonhibernator whole animal model. To improve the therapeutic performance of the drug and minimize its toxicity, we encapsulated DNP in a nanoemulsion formulated with low-toxicity materials. This formulation is composed of emulsified droplets <200 nm in diameter that contain 1.250 mM DNP, representing ≥95% encapsulation efficiency. The DNP nanoemulsion induced comparable torpor-like effects to those produced by the free drug in tadpoles, as indicated by reduced swimming motion, cardiac beating frequency, and oxygen consumption, but with an improved biodistribution. Use of the nanoemulsion resulted in a more controlled increase of DNP concentration in the whole organism compared to free DNP, and to a higher concentration in the brain, which reduced DNP toxicity and enabled induction of a longer torpor-like state that was fully reversible. These studies also demonstrate the potential use of Xenopus tadpoles as a high-throughput in vivo screen to assess the efficacy, biodistribution, and toxicity of drug-loaded nanocarriers.


Asunto(s)
Donepezilo , Emulsiones , Larva , Xenopus laevis , Animales , Emulsiones/química , Larva/efectos de los fármacos , Donepezilo/farmacología , Donepezilo/química , Nanopartículas/química , Tamaño de la Partícula
2.
Elife ; 132024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316042

RESUMEN

Drugs that induce reversible slowing of metabolic and physiological processes would have great value for organ preservation, especially for organs with high susceptibility to hypoxia-reperfusion injury, such as the heart. Using whole-organism screening of metabolism, mobility, and development in Xenopus, we identified an existing drug, SNC80, that rapidly and reversibly slows biochemical and metabolic activities while preserving cell and tissue viability. Although SNC80 was developed as a delta opioid receptor activator, we discovered that its ability to slow metabolism is independent of its opioid modulating activity as a novel SNC80 analog (WB3) with almost 1000 times less delta opioid receptor binding activity is equally active. Metabolic suppression was also achieved using SNC80 in microfluidic human organs-on-chips, as well as in explanted whole porcine hearts and limbs, demonstrating the cross-species relevance of this approach and potential clinical relevance for surgical transplantation. Pharmacological induction of physiological slowing in combination with organ perfusion transport systems may offer a new therapeutic approach for tissue and organ preservation for transplantation, trauma management, and enhancing patient survival in remote and low-resource locations.


Asunto(s)
Preservación de Órganos , Animales , Preservación de Órganos/métodos , Humanos , Porcinos , Xenopus , Receptores Opioides delta/metabolismo , Receptores Opioides delta/agonistas
3.
J Am Assoc Lab Anim Sci ; 61(1): 21-30, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903312

RESUMEN

Swine are widely used in biomedical research, translational research, xenotransplantation, and agriculture. For these uses, physiologic reference intervals are extremely important for assessing the health status of the swine and diagnosing disease. However, few biochemical and hematologic reference intervals that comply with guidelines from the Clinical and Laboratory Standards Institute and the American Society for Veterinary Clinical Pathology are available for swine. These guidelines state that reference intervals should be determined by using 120 subjects or more. The aim of this study was to generate hematologic and biochemical reference intervals for female, juvenile Yorkshire swine (Sus scrofa domesticus) and to compare these values with those for humans and baboons (Papio hamadryas). Blood samples were collected from the femoral artery or vein of female, juvenile Yorkshire swine, and standard hematologic and biochemical parameters were analyzed in multiple studies. Hematologic and biochemical reference intervals were calculated for arterial blood samples from Yorkshire swine (n = 121 to 124); human and baboon reference intervals were obtained from the literature. Arterial reference intervals for Yorkshire swine differed significantly from those for humans and baboons in all commonly measured parameters except platelet count, which did not differ significantly from the human value, and glucose, which was not significantly different from the baboon value. These data provide valuable information for investigators using female, juvenile Yorkshire swine for biomedical re- search, as disease models, and in xenotransplantation studies as well as useful physiologic information for veterinarians and livestock producers. Our findings highlight the need for caution when comparing data and study outcomes between species.


Asunto(s)
Pruebas Hematológicas , Animales , Femenino , Pruebas Hematológicas/veterinaria , Estándares de Referencia , Valores de Referencia , Porcinos
4.
PLoS One ; 17(11): e0276777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36413530

RESUMEN

Rapid identification of potentially life-threatening blood stream infections (BSI) improves clinical outcomes, yet conventional blood culture (BC) identification methods require ~24-72 hours of liquid culture, plus 24-48 hours to generate single colonies on solid media suitable for identification by mass spectrometry (MS). Newer rapid centrifugation techniques, such as the Bruker MBT-Sepsityper® IVD, replace culturing on solid media and expedite the diagnosis of BCs but frequently demonstrate reduced sensitivity for identifying clinically significant Gram-positive bacterial or fungal infections. This study introduces a protocol that utilises the broad-range binding properties of an engineered version of mannose-binding lectin linked to the Fc portion of immunoglobulin (FcMBL) to capture and enrich pathogens combined with matrix-assisted laser desorption-ionisation time-of-flight (MALDI-TOF) MS for enhanced infection identification in BCs. The FcMBL method identified 94.1% (64 of 68) of clinical BCs processed, with a high sensitivity for both Gram-negative and Gram-positive bacteria (94.7 and 93.2%, respectively). The FcMBL method identified more patient positive BCs than the Sepsityper® (25 of 25 vs 17 of 25), notably with 100% (3/3) sensitivity for clinical candidemia, compared to only 33% (1/3) for the Sepsityper®. Additionally, during inoculation experiments, the FcMBL method demonstrated a greater sensitivity, identifying 100% (24/24) of candida to genus level and 9/24 (37.5%) top species level compared to 70.8% (17/24) to genus and 6/24 to species (25%) using the Sepsityper®. This study demonstrates that capture and enrichment of samples using magnetic FcMBL-conjugated beads is superior to rapid centrifugation methods for identification of BCs by MALDI-TOF MS. Deploying the FcMBL method therefore offers potential clinical benefits in sensitivity and reduced turnaround times for BC diagnosis compared to the standard Sepsityper® kit, especially for fungal diagnosis.


Asunto(s)
Bacteriemia , Sepsis , Humanos , Niño , Cultivo de Sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Técnicas Bacteriológicas/métodos , Bacteriemia/diagnóstico , Bacteriemia/microbiología , Bacterias Grampositivas , Fenómenos Magnéticos
5.
Nat Biomed Eng ; 6(1): 8-18, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34239117

RESUMEN

Most bacterial vaccines work for a subset of bacterial strains or require the modification of the antigen or isolation of the pathogen before vaccine development. Here we report injectable biomaterial vaccines that trigger potent humoral and T-cell responses to bacterial antigens by recruiting, reprogramming and releasing dendritic cells. The vaccines are assembled from regulatorily approved products and consist of a scaffold with absorbed granulocyte-macrophage colony-stimulating factor and CpG-rich oligonucleotides incorporating superparamagnetic microbeads coated with the broad-spectrum opsonin Fc-mannose-binding lectin for the magnetic capture of pathogen-associated molecular patterns from inactivated bacterial-cell-wall lysates. The vaccines protect mice against skin infection with methicillin-resistant Staphylococcus aureus, mice and pigs against septic shock from a lethal Escherichia coli challenge and, when loaded with pathogen-associated molecular patterns isolated from infected animals, uninfected animals against a challenge with different E. coli serotypes. The strong immunogenicity and low incidence of adverse events, a modular manufacturing process, and the use of components compatible with current good manufacturing practice could make this vaccine technology suitable for responding to bacterial pandemics and biothreats.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Choque Séptico , Vacunas , Animales , Materiales Biocompatibles , Escherichia coli , Ratones , Moléculas de Patrón Molecular Asociado a Patógenos , Porcinos
6.
ACS Biomater Sci Eng ; 5(2): 420-424, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405807

RESUMEN

Localized infections caused by biofilm formation on dentures pose a serious health risk for patients, especially the elderly, as they can lead to complications such as pneumonia. Daily enzymatic denture cleaners do not fully prevent biofilm formation on dentures. Here we developed a rapid coating process to apply a liquid repellent surface to dentures in ∼5 min and demonstrated a significant 225-fold reduction of Candida albicans adhesion over 6 days, compared to uncoated dentures. This rapid coating process could be applied to dentures and other dental devices chair-side and allow the research community to quickly and easily generate ominphobic surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA