Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30674625

RESUMEN

Hepatitis C is a liver disease caused by the hepatitis C virus (HCV) affecting 71 million people worldwide with no licensed vaccines that prevent infection. Here, we have generated four novel alphavirus-based DNA-launched self-amplifying RNA replicon (DREP) vaccines expressing either structural core-E1-E2 or nonstructural p7-NS2-NS3 HCV proteins of genotype 1a placed under the control of an alphavirus promoter, with or without an alphaviral translational enhancer (grouped as DREP-HCV or DREP-e-HCV, respectively). DREP vectors are known to induce cross-priming and further stimulation of immune responses through apoptosis, and here we demonstrate that they efficiently trigger apoptosis-related proteins in transfected cells. Immunization of mice with the DREP vaccines as the priming immunization followed by a heterologous boost with a recombinant modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV (MVA-HCV) induced potent and long-lasting HCV-specific CD4+ and CD8+ T cell immune responses that were significantly stronger than those of a homologous MVA-HCV prime/boost immunization, with the DREP-e-HCV/MVA-HCV combination the most immunogenic regimen. HCV-specific CD4+ and CD8+ T cell responses were highly polyfunctional, had an effector memory phenotype, and were mainly directed against E1-E2 and NS2-NS3, respectively. Additionally, DREP/MVA-HCV immunization regimens induced higher antibody levels against HCV E2 protein than homologous MVA-HCV immunization. Collectively, these results provided an immunization protocol against HCV by inducing high levels of HCV-specific T cell responses as well as humoral responses. These findings reinforce the combined use of DREP-based vectors and MVA-HCV as promising prophylactic and therapeutic vaccines against HCV.IMPORTANCE HCV represents a global health problem as more than 71 million people are chronically infected worldwide. Direct-acting antiviral agents can cure HCV infection in most patients, but due to the high cost of these agents and the emergence of resistant mutants, they do not represent a feasible and affordable strategy to eradicate the virus. Therefore, a vaccine is an urgent goal that requires efforts to understand the correlates of protection for HCV clearance. Here, we describe for the first time the generation of novel vaccines against HCV based on alphavirus DNA replicons expressing HCV antigens. We demonstrate that potent T cell immune responses, as well as humoral immune responses, against HCV can be achieved in mice by using a combined heterologous prime/boost immunization protocol consisting of the administration of alphavirus replicon DNA vectors as the priming immunization followed by a boost with a recombinant modified vaccinia virus Ankara vector expressing HCV antigens.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Replicón/inmunología , Virus Vaccinia/inmunología , Vacunas Virales/inmunología , Alphavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , ADN/inmunología , Vectores Genéticos/inmunología , Inmunización/métodos , Ratones , ARN/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Proteínas no Estructurales Virales/inmunología
2.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29514907

RESUMEN

Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-ß), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV.IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Proteínas de la Matriz Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Línea Celular Tumoral , Quimiocinas/inmunología , Embrión de Pollo , República Democrática del Congo , Células Dendríticas/inmunología , Ebolavirus/genética , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón beta/inmunología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Sudán , Vacunación , Vacunas de ADN , Proteínas de la Matriz Viral/biosíntesis , Proteínas de la Matriz Viral/genética , Vacunas Virales/genética
3.
Proc Natl Acad Sci U S A ; 113(3): E368-77, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26668381

RESUMEN

An increased incidence in the sleep-disorder narcolepsy has been associated with the 2009-2010 pandemic of H1N1 influenza virus in China and with mass vaccination campaigns against influenza during the pandemic in Finland and Sweden. Pathogenetic mechanisms of narcolepsy have so far mainly focused on autoimmunity. We here tested an alternative working hypothesis involving a direct role of influenza virus infection in the pathogenesis of narcolepsy in susceptible subjects. We show that infection with H1N1 influenza virus in mice that lack B and T cells (Recombinant activating gene 1-deficient mice) can lead to narcoleptic-like sleep-wake fragmentation and sleep structure alterations. Interestingly, the infection targeted brainstem and hypothalamic neurons, including orexin/hypocretin-producing neurons that regulate sleep-wake stability and are affected in narcolepsy. Because changes occurred in the absence of adaptive autoimmune responses, the findings show that brain infections with H1N1 virus have the potential to cause per se narcoleptic-like sleep disruption.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Narcolepsia/fisiopatología , Narcolepsia/virología , Neuronas/fisiología , Sueño , Vigilia , Animales , Antígenos Virales/inmunología , Electroencefalografía , Proteínas de Homeodominio/metabolismo , Hipotálamo/fisiopatología , Hipotálamo/virología , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Bulbo Olfatorio/fisiopatología , Bulbo Olfatorio/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones por Orthomyxoviridae/virología
4.
J Gen Virol ; 96(Pt 3): 565-570, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25395591

RESUMEN

A salmonid alphavirus (SAV) replicon has been developed to express heterologous antigens but protein production was low to modest compared with terrestrial alphavirus replicons. In this study, we have compared several modifications to a SAV replicon construct and analysed their influence on foreign gene expression. We found that an insertion of a translational enhancer consisting of the N-terminal 102 nt of the capsid gene, together with a nucleotide sequence encoding the foot-and-mouth disease virus (FMDV) 2A peptide, caused a significant increase in EGFP reporter gene expression. The importance of fusing a hammerhead (HH) ribozyme sequence at the 5' end of the viral genome was also demonstrated. In contrast, a hepatitis D virus ribozyme (HDV-RZ) sequence placed at the 3' end did not augment expression of inserted genes. Taken together, we have developed a platform for optimized antigen production, which can be applied for immunization of salmonid fish in the future.


Asunto(s)
Alphavirus/genética , Antígenos Virales/metabolismo , Vectores Genéticos/genética , Replicón/genética , Animales , Antígenos Virales/genética , Línea Celular , Efecto Citopatogénico Viral , ADN Complementario , ADN Viral , Regulación Viral de la Expresión Génica/fisiología , Vectores Genéticos/fisiología , Cultivo de Virus
5.
J Virol ; 88(6): 3527-47, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24403588

RESUMEN

UNLABELLED: There is a need to develop a single and highly effective vaccine against the emerging chikungunya virus (CHIKV), which causes a severe disease in humans. Here, we have generated and characterized the immunogenicity profile and the efficacy of a novel CHIKV vaccine candidate based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). MVA-CHIKV was stable in cell culture, expressed the CHIKV structural proteins, and triggered the cytoplasmic accumulation of Golgi apparatus-derived membranes in infected human cells. Furthermore, MVA-CHIKV elicited robust innate immune responses in human macrophages and monocyte-derived dendritic cells, with production of beta interferon (IFN-ß), proinflammatory cytokines, and chemokines. After immunization of C57BL/6 mice with a homologous protocol (MVA-CHIKV/MVA-CHIKV), strong, broad, polyfunctional, and durable CHIKV-specific CD8(+) T cell responses were elicited. The CHIKV-specific CD8(+) T cells were preferentially directed against E1 and E2 proteins and, to a lesser extent, against C protein. CHIKV-specific CD8(+) memory T cells of a mainly effector memory phenotype were also induced. The humoral arm of the immune system was significantly induced, as MVA-CHIKV elicited high titers of neutralizing antibodies against CHIKV. Remarkably, a single dose of MVA-CHIKV protected all mice after a high-dose challenge with CHIKV. In summary, MVA-CHIKV is an effective vaccine against chikungunya virus infection that induced strong, broad, highly polyfunctional, and long-lasting CHIKV-specific CD8(+) T cell responses, together with neutralizing antibodies against CHIKV. These results support the consideration of MVA-CHIKV as a potential vaccine candidate against CHIKV. IMPORTANCE: We have developed a novel vaccine candidate against chikungunya virus (CHIKV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). Our findings revealed that MVA-CHIKV is a highly effective vaccine against chikungunya virus, with a single dose of the vaccine protecting all mice after a high-dose challenge with CHIKV. Furthermore, MVA-CHIKV is highly immunogenic, inducing strong innate responses: high, broad, polyfunctional, and long-lasting CHIKV-specific CD8(+) T cell responses, together with neutralizing antibodies against CHIKV. This work provides a potential vaccine candidate against CHIKV.


Asunto(s)
Infecciones por Alphavirus/prevención & control , Virus Chikungunya/inmunología , Virus Vaccinia/genética , Vacunas Virales/administración & dosificación , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Fiebre Chikungunya , Virus Chikungunya/genética , Citocinas/inmunología , Femenino , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Inmunización , Ratones , Ratones Endogámicos C57BL , Virus Vaccinia/inmunología , Proteínas Estructurales Virales/administración & dosificación , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
6.
J Virol ; 88(21): 12438-51, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25122792

RESUMEN

UNLABELLED: Alphavirus replicons are potent inducers of CD8(+) T cell responses and thus constitute an attractive vaccine vector platform for developing novel vaccines. However, the kinetics and memory phenotype of CD8(+) T cell responses induced by alphavirus replicons are not well characterized. Furthermore, little is known how priming with alphavirus replicons affects booster immune responses induced by other vaccine modalities. We demonstrate here that a single immunization with an alphavirus replicon, administered as viral particles or naked DNA, induced an antigen-specific CD8(+) T cell response that had a sharp peak, followed by a rapid contraction. Administering a homologous boost before contraction had occurred did not further increase the response. In contrast, boosting after contraction when CD8(+) T cells had obtained a memory phenotype (based on CD127/CD62L expression), resulted in maintenance of CD8(+) T cells with a high recall capacity (based on CD27/CD43 expression). Increasing the dose of replicon particles promoted T effector memory (Tem) and inhibited T central memory development. Moreover, infection with a replicating alphavirus induced a similar distribution of CD8(+) T cells as the replicon vector. Lastly, the distribution of T cell subpopulations induced by a DNA-launched alphavirus replicon could be altered by heterologous boosts. For instance, boosting with a poxvirus vector (MVA) favored expansion of the Tem compartment. In summary, we have characterized the antigen-specific CD8(+) T cell response induced by alphavirus replicon vectors and demonstrated how it can be altered by homologous and heterologous boost immunizations. IMPORTANCE: Alphavirus replicons are promising vaccine candidates against a number of diseases and are by themselves developed as vaccines against, for example, Chikungunya virus infection. Replicons are also considered to be used for priming, followed by booster immunization using different vaccine modalities. In order to rationally design prime-boost immunization schedules with these vectors, characterization of the magnitude and phenotype of CD8(+) T cell responses induced by alphavirus replicons is needed. Here, we demonstrate how factors such as timing and dose affect the phenotypes of memory T cell populations induced by immunization with alphavirus replicons. These findings are important for designing future clinical trials with alphaviruses, since they can be used to tailor vaccination regimens in order to induce a CD8(+) T cell response that is optimal for control and/or clearance of a specific pathogen.


Asunto(s)
Alphavirus/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Ratones Endogámicos C57BL , Ratones Noqueados , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación
7.
J Virol ; 88(22): 13333-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25210177

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that causes debilitating arthralgia in humans. Here we describe the development and testing of novel DNA replicon and protein CHIKV vaccine candidates and evaluate their abilities to induce antigen-specific immune responses against CHIKV. We also describe homologous and heterologous prime-boost immunization strategies using novel and previously developed CHIKV vaccine candidates. Immunogenicity and efficacy were studied in a mouse model of CHIKV infection and showed that the DNA replicon and protein antigen were potent vaccine candidates, particularly when used for priming and boosting, respectively. Several prime-boost immunization strategies eliciting unmatched humoral and cellular immune responses were identified. Further characterization by antibody epitope mapping revealed differences in the qualitative immune responses induced by the different vaccine candidates and immunization strategies. Most vaccine modalities resulted in complete protection against wild-type CHIKV infection; however, we did identify circumstances under which certain immunization regimens may lead to enhancement of inflammation upon challenge. These results should help guide the design of CHIKV vaccine studies and will form the basis for further preclinical and clinical evaluation of these vaccine candidates. IMPORTANCE: As of today, there is no licensed vaccine to prevent CHIKV infection. In considering potential new vaccine candidates, a vaccine that could raise long-term protective immunity after a single immunization would be preferable. While humoral immunity seems to be central for protection against CHIKV infection, we do not yet fully understand the correlates of protection. Therefore, in the absence of a functional vaccine, there is a need to evaluate a number of different candidates, assessing their merits when they are used either in a single immunization or in a homologous or heterologous prime-boost modality. Here we show that while single immunization with various vaccine candidates results in potent responses, combined approaches significantly enhance responses, suggesting that such approaches need to be considered in the further development of an efficacious CHIKV vaccine.


Asunto(s)
Fiebre Chikungunya/prevención & control , Virus Chikungunya/inmunología , Inmunización/métodos , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Fiebre Chikungunya/inmunología , Modelos Animales de Enfermedad , Femenino , Leucocitos Mononucleares/inmunología , Ratones Endogámicos C57BL , Análisis de Supervivencia , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación
8.
J Virol ; 88(5): 2858-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371047

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encoding nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA. The resulting attenuated mutants were genetically stable and elicited high magnitudes of binding and neutralizing antibodies as well as strong T cell responses after a single immunization in C57BL/6 mice. Subsequent challenge with a high dose of CHIKV demonstrated that the induced antibody responses protected the animals from viremia and joint swelling. The protective antibody response was long-lived, and a second homologous immunization further enhanced immune responses. In summary, this report demonstrates a straightforward means of constructing stable and efficient attenuated CHIKV vaccine candidates that can be administered either as viral particles or as infectious genomes launched by DNA. IMPORTANCE: Similar to other infectious diseases, the best means of preventing CHIKV infection would be by vaccination using an attenuated vaccine platform which preferably raises protective immunity after a single immunization. However, the attenuated CHIKV vaccine candidates developed to date rely on a small number of attenuating point mutations and are at risk of being unstable or even sensitive to reversion. We report here the construction and preclinical evaluation of novel CHIKV vaccine candidates that have been attenuated by introducing large deletions. The resulting mutants proved to be genetically stable, attenuated, highly immunogenic, and able to confer durable immunity after a single immunization. Moreover, these mutants can be administered either as viral particles or as DNA-launched infectious genomes, enabling evaluation of the most feasible vaccine modality for a certain setting. These CHIKV mutants could represent stable and efficient vaccine candidates against CHIKV.


Asunto(s)
Infecciones por Alphavirus/inmunología , Virus Chikungunya/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Infecciones por Alphavirus/prevención & control , Infecciones por Alphavirus/virología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya , Virus Chikungunya/genética , Femenino , Orden Génico , Genoma Viral , Inmunidad Celular , Inmunización , Inmunización Secundaria , Ratones , Ratones Endogámicos C57BL , Mutación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
9.
J Virol ; 86(8): 4082-90, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22318135

RESUMEN

Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 µg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.


Asunto(s)
ADN Viral/inmunología , VIH-1/inmunología , Plásmidos/inmunología , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/inmunología , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , ADN Viral/genética , Electroporación , Femenino , Orden Génico , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Plásmidos/administración & dosificación , Plásmidos/genética , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética
10.
J Virol ; 86(13): 7384-92, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22514347

RESUMEN

Interferon (IFN) regulatory factors (IRFs) are a family of transcription factors involved in regulating type I IFN genes and other genes participating in the early antiviral host response. To better understand the mechanisms involved in virus-induced central nervous system (CNS) inflammation, we studied the influence of IRF1, -3, -7, and -9 on the transcriptional activity of key genes encoding antiviral host factors in the CNS of mice infected with lymphocytic choriomeningitis virus (LCMV). A key finding is that neither IRF3 nor IRF7 is absolutely required for induction of a type I IFN response in the LCMV-infected CNS, whereas concurrent elimination of both factors markedly reduces the virus-induced host response. This is unlike the situation in the periphery, where deficiency of IRF7 almost eliminates the LCMV-induced production of the type I IFNs. This difference is seemingly related to the local environment, as peripheral production of type I IFNs is severely reduced in intracerebrally (i.c.) infected IRF7-deficient mice, which undergo a combined infection of the CNS and peripheral organs, such as spleen and lymph nodes. Interestingly, despite the redundancy of IRF7 in initiating the type I IFN response in the CNS, the response is not abolished in IFN-ß-deficient mice, as might have been expected. Collectively, these data demonstrate that the early type I IFN response to LCMV infection in the CNS is controlled by a concerted action of IRF3 and -7. Consequently this work provides strong evidence for differential regulation of the type I IFN response in the CNS versus the periphery during viral infection.


Asunto(s)
Factor 3 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/inmunología , Interferón Tipo I/biosíntesis , Virus de la Coriomeningitis Linfocítica/inmunología , Sistema Nervioso/inmunología , Sistema Nervioso/virología , Animales , Femenino , Factor 3 Regulador del Interferón/deficiencia , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/deficiencia , Factor 7 Regulador del Interferón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
11.
PLoS Pathog ; 7(5): e1002041, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21625575

RESUMEN

Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Epítopos de Linfocito T/inmunología , VIH-1/inmunología , Epítopos Inmunodominantes/inmunología , Animales , Citocinas/análisis , Femenino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa
12.
Virol J ; 10: 235, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23855906

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) has been responsible for large epidemic outbreaks causing fever, headache, rash and severe arthralgia. So far, no specific treatment or vaccine is available. As nucleic acid amplification can only be used during the viremic phase of the disease, serological tests like neutralization assays are necessary for CHIKV diagnosis and for determination of the immune status of a patient. Furthermore, neutralization assays represent a useful tool to validate the efficacy of potential vaccines. As CHIKV is a BSL3 agent, neutralization assays with infectious virus need to be performed under BSL3 conditions. Our aim was to develop a neutralization assay based on non-infectious virus replicon particles (VRPs). METHODS: VRPs were produced by cotransfecting baby hamster kidney-21 cells with a CHIKV replicon expressing Gaussia luciferase (Gluc) and two helper RNAs expressing the CHIKV capsid protein or the remaining structural proteins, respectively. The resulting single round infectious particles were used in CHIKV neutralization assays using secreted Gluc as readout. RESULTS: Upon cotransfection of a CHIKV replicon expressing Gluc and the helper RNAs VRPs could be produced efficiently under optimized conditions at 32°C. Infection with VRPs could be measured via Gluc secreted into the supernatant. The successful use of VRPs in CHIKV neutralization assays was demonstrated using a CHIKV neutralizing monoclonal antibody or sera from CHIKV infected patients. Comparison of VRP based neutralization assays in 24- versus 96-well format using different amounts of VRPs revealed that in the 96-well format a high multiplicity of infection is favored, while in the 24-well format reliable results are also obtained using lower infection rates. Comparison of different readout times revealed that evaluation of the neutralization assay is already possible at the same day of infection. CONCLUSIONS: A VRP based CHIKV neutralization assay using Gluc as readout represents a fast and useful method to determine CHIKV neutralizing antibodies without the need of using infectious CHIKV.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Virus Chikungunya/inmunología , Luciferasas/análisis , Pruebas de Neutralización/métodos , Animales , Línea Celular , Virus Chikungunya/genética , Cricetinae , Genes Reporteros , Humanos , Luciferasas/genética , Factores de Tiempo
13.
Eur J Immunol ; 40(7): 1973-84, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20468055

RESUMEN

A novel T-cell vaccine strategy designed to deal with the enormity of HIV-1 variation is described and tested for the first time in macaques to inform and complement approaching clinical trials. T-cell immunogen HIVconsv, which directs vaccine-induced responses to the most conserved regions of the HIV-1, proteome and thus both targets diverse clades in the population and reduces the chance of escape in infected individuals, was delivered using six different vaccine modalities: plasmid DNA (D), attenuated human (A) and chimpanzee (C) adenoviruses, modified vaccinia virus Ankara (M), synthetic long peptides, and Semliki Forest virus replicons. We confirmed that the initial DDDAM regimen, which mimics one of the clinical schedules (DDDCM), is highly immunogenic in macaques. Furthermore, adjuvanted synthetic long peptides divided into sub-pools and delivered into anatomically separate sites induced T-cell responses that were markedly broader than those elicited by traditional single-open-reading-frame genetic vaccines and increased by 30% the overall response magnitude compared with DDDAM. Thus, by improving both the HIV-1-derived immunogen and vector regimen/delivery, this approach could induce stronger, broader, and theoretically more protective T-cell responses than vaccines previously used in humans.


Asunto(s)
Vacunas contra el SIDA , Antígenos VIH/administración & dosificación , VIH-1/inmunología , Fragmentos de Péptidos/administración & dosificación , Linfocitos T/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Secuencia Conservada/genética , Sistemas de Liberación de Medicamentos , Mapeo Epitopo/métodos , Epítopos de Linfocito T/genética , Vectores Genéticos , Antígenos VIH/genética , Humanos , Inmunización , Activación de Linfocitos/efectos de los fármacos , Macaca mulatta , Fragmentos de Péptidos/genética , Biblioteca de Péptidos , Especificidad del Receptor de Antígeno de Linfocitos T/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/patología
14.
Virol J ; 8: 36, 2011 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-21261958

RESUMEN

BACKGROUND: Alphaviral replicon-based vectors induce potent immune responses both when given as viral particles (VREP) or as DNA (DREP). It has been suggested that the strong immune stimulatory effect induced by these types of vectors is mediated by induction of danger signals and activation of innate signalling pathways due to the replicase activity. To investigate the innate signalling pathways involved, mice deficient in either toll-like receptors or downstream innate signalling molecules were immunized with DREP or VREP. RESULTS: We show that the induction of a CD8+ T cell response did not require functional TLR3 or MyD88 signalling. However, IRF3, converging several innate signalling pathways and important for generation of pro-inflammatory cytokines and type I IFNs, was needed for obtaining a robust primary immune response. Interestingly, type I interferon (IFN), induced by most innate signalling pathways, had a suppressing effect on both the primary and memory T cell responses after DREP and VREP immunization. CONCLUSIONS: We show that alphaviral replicon-based vectors activate multiple innate signalling pathways, which both activate and restrict the induced immune response. These results further show that there is a delicate balance in the strength of innate signalling and induction of adaptive immune responses that should be taken into consideration when innate signalling molecules, such as type I IFNs, are used as vaccine adjuvant.


Asunto(s)
Alphavirus/genética , Portadores de Fármacos , Vectores Genéticos , Inmunidad Innata , Transducción de Señal , Vacunas Virales/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Femenino , Ratones , Ratones Noqueados
15.
Nature ; 433(7028): 887-92, 2005 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-15711573

RESUMEN

Cross-presentation of cell-associated antigens plays an important role in regulating CD8+ T cell responses to proteins that are not expressed by antigen-presenting cells (APCs). Dendritic cells are the principal cross-presenting APCs in vivo and much progress has been made in elucidating the pathways that allow dendritic cells to capture and process cellular material. However, little is known about the signals that determine whether such presentation ultimately results in a cytotoxic T cell (CTL) response (cross-priming) or in CD8+ T cell inactivation (cross-tolerance). Here we describe a mechanism that promotes cross-priming during viral infections. We show that murine CD8alpha+ dendritic cells are activated by double-stranded (ds)RNA present in virally infected cells but absent from uninfected cells. Dendritic cell activation requires phagocytosis of infected material, followed by signalling through the dsRNA receptor, toll-like receptor 3 (TLR3). Immunization with virus-infected cells or cells containing synthetic dsRNA leads to a striking increase in CTL cross-priming against cell-associated antigens, which is largely dependent on TLR3 expression by antigen-presenting cells. Thus, TLR3 may have evolved to permit cross-priming of CTLs against viruses that do not directly infect dendritic cells.


Asunto(s)
Presentación de Antígeno/inmunología , Infecciones por Cardiovirus/inmunología , Reactividad Cruzada/inmunología , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Linfocitos T Citotóxicos/inmunología , Animales , Chlorocebus aethiops , Células Dendríticas/inmunología , Virus de la Encefalomiocarditis/inmunología , Virus de la Encefalomiocarditis/fisiología , Endosomas/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Poli I-C/inmunología , Poli I-C/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptor Toll-Like 3 , Receptores Toll-Like , Células Vero
16.
Sci Rep ; 11(1): 3125, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542325

RESUMEN

The outbreak of the SARS-CoV-2 virus and its rapid spread into a global pandemic made the urgent development of scalable vaccines to prevent coronavirus disease (COVID-19) a global health and economic imperative. Here, we characterized and compared the immunogenicity of two alphavirus-based DNA-launched self-replicating (DREP) vaccine candidates encoding either SARS-CoV-2 spike glycoprotein (DREP-S) or a spike ectodomain trimer stabilized in prefusion conformation (DREP-Secto). We observed that the two DREP constructs were immunogenic in mice inducing both binding and neutralizing antibodies as well as T cell responses. Interestingly, the DREP coding for the unmodified spike turned out to be more potent vaccine candidate, eliciting high titers of SARS-CoV-2 specific IgG antibodies that were able to efficiently neutralize pseudotyped virus after a single immunization. In addition, both DREP constructs were able to efficiently prime responses that could be boosted with a heterologous spike protein immunization. These data provide important novel insights into SARS-CoV-2 vaccine design using a rapid response DNA vaccine platform. Moreover, they encourage the use of mixed vaccine modalities as a strategy to combat SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/inmunología , Animales , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL
17.
Nat Commun ; 12(1): 5215, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471122

RESUMEN

Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.


Asunto(s)
Antígenos CD40/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Convalecencia , Humanos , Macaca , Ratones , Mutación , Dominios Proteicos , Reinfección/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología , Vacunación , Vacunas de Subunidad/inmunología
18.
J Virol ; 83(11): 5881-9, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19321612

RESUMEN

Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4(+) and CD8(+) T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-gamma, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-gamma T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.


Asunto(s)
VIH-1/inmunología , Macaca mulatta/inmunología , Linfocitos T/inmunología , Vacunas Virales/inmunología , Animales , Humanos , Tolerancia Inmunológica/inmunología , Inmunización Secundaria , Memoria Inmunológica/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Fenotipo
19.
Sci Rep ; 10(1): 21076, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273501

RESUMEN

We describe a novel vaccine platform that can generate protective immunity to chikungunya virus (CHIKV) in C57BL/6J mice after a single immunization by employing an infectious RNA (iRNA), which upon introduction into a host cell launches an infectious attenuated virus. We and others have previously reported that an engineered deletion of 183 nucleotides in the nsP3 gene attenuates chikungunya virus (CHIKV) and reduces in vivo viral replication and viremia after challenge in mice, macaques and man. Here, we demonstrated that in vitro transfection of iRNA carrying the nsP3 deletion generated infectious viruses, and after intramuscular injection, the iRNA induced robust antibody responses in mice. The iRNA was superior at eliciting binding and neutralizing antibody responses as compared to a DNA vaccine encoding the same RNA (iDNA) or a non-propagating RNA replicon (RREP) lacking the capsid encoding gene. Subsequent challenge with a high dose of CHIKV demonstrated that the antibody responses induced by this vaccine candidate protected animals from viremia. The iRNA approach constitutes a novel vaccine platform with the potential to impact the spread of CHIKV. Moreover, we believe that this approach is likely applicable also to other positive-strand viruses.


Asunto(s)
Fiebre Chikungunya/prevención & control , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Virus Chikungunya/patogenicidad , Femenino , Inmunogenicidad Vacunal , Inyecciones Intramusculares , Ratones , Ratones Endogámicos C57BL , Mutación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Vacunas de ARNm
20.
Nat Rev Mater ; 5(11): 847-860, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33078077

RESUMEN

The ongoing SARS-CoV-2 pandemic highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA