Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 55(44): 13700-13705, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27482655

RESUMEN

First-pass hepatic metabolism can significantly limit oral drug bioavailability. Drug transport from the intestine through the lymphatic system, rather than the portal vein, circumvents first-pass metabolism. However, the majority of drugs do not have the requisite physicochemical properties to facilitate lymphatic access. Herein, we describe a prodrug strategy that promotes selective transport through the intestinal lymph vessels and subsequent release of drug in the systemic circulation, thereby enhancing oral bioavailability. Using testosterone (TST) as a model high first-pass drug, glyceride-mimetic prodrugs incorporating self-immolative (SI) spacers, resulted in remarkable increases (up to 90-fold) in TST plasma exposure when compared to the current commercial product testosterone undecanoate (TU). This approach opens new opportunities for the effective development of drugs where oral delivery is limited by first-pass metabolism and provides a new avenue to enhance drug targeting to intestinal lymphoid tissue.


Asunto(s)
Glicéridos/química , Sistema Linfático/metabolismo , Profármacos/química , Administración Oral , Animales , Disponibilidad Biológica , Glicéridos/administración & dosificación , Glicéridos/metabolismo , Humanos , Profármacos/administración & dosificación , Profármacos/metabolismo
2.
Front Pharmacol ; 13: 879660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496278

RESUMEN

Buprenorphine (BUP) is a potent opioid analgesic that is widely used for severe pain management and opioid replacement therapy. The oral bioavailability of BUP, however, is significantly limited by first-pass metabolism. Previous studies have shown that triglyceride (TG) mimetic prodrugs of the steroid hormone testosterone circumvent first-pass metabolism by directing drug transport through the intestinal lymphatics, bypassing the liver. The current study expanded this prodrug strategy to BUP. Here different self-immolative (SI) linkers were evaluated to conjugate BUP to the 2 position of the TG backbone via the phenol group on BUP. The SI linkers were designed to promote drug release in plasma. Lipolysis of the prodrug in the intestinal tract was examined via incubation with simulated intestinal fluid (SIF), and potential for parent drug liberation in the systemic circulation was evaluated via incubation in rat plasma. Lymphatic transport and bioavailability studies were subsequently conducted in mesenteric lymph duct or carotid artery-cannulated rats, respectively. TG prodrug derivatives were efficiently transported into the lymphatics (up to 45% of the dose in anaesthetised rats, vs. less than 0.1% for BUP). Incorporation of the SI linkers facilitated BUP release from the prodrugs in the plasma and in concert with high lymphatic transport led to a marked enhancement in oral bioavailability (up to 22-fold) compared to BUP alone. These data suggest the potential to develop an orally bioavailable BUP product which may have advantages with respect to patient preference when compared to current sublingual, transdermal patch or parenteral formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA