Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 152(1-2): 276-89, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23273991

RESUMEN

MDA5, a viral double-stranded RNA (dsRNA) receptor, shares sequence similarity and signaling pathways with RIG-I yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. Revealing the molecular basis for the functional divergence, we report here the crystal structure of MDA5 bound to dsRNA, which shows how, using the same domain architecture, MDA5 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. We further show that MDA5 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement, and that the signaling domain (tandem CARD), which decorates the outside of the core MDA5 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. These data support a model in which MDA5 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Bicatenario/metabolismo , Secuencia de Aminoácidos , Humanos , Helicasa Inducida por Interferón IFIH1 , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN Bicatenario/química , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo , Alineación de Secuencia , Difracción de Rayos X
2.
Proc Natl Acad Sci U S A ; 109(49): E3340-9, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23129641

RESUMEN

The viral sensor MDA5 distinguishes between cellular and viral dsRNAs by length-dependent recognition in the range of ~0.5-7 kb. The ability to discriminate dsRNA length at this scale sets MDA5 apart from other dsRNA receptors of the immune system. We have shown previously that MDA5 forms filaments along dsRNA that disassemble upon ATP hydrolysis. Here, we demonstrate that filament formation alone is insufficient to explain its length specificity, because the intrinsic affinity of MDA5 for dsRNA depends only moderately on dsRNA length. Instead, MDA5 uses a combination of end disassembly and slow nucleation kinetics to "discard" short dsRNA rapidly and to suppress rebinding. In contrast, filaments on long dsRNA cycle between partial end disassembly and elongation, bypassing nucleation steps. MDA5 further uses this repetitive cycle of assembly and disassembly processes to repair filament discontinuities, which often are present because of multiple, internal nucleation events, and to generate longer, continuous filaments that more accurately reflect the length of the underlying dsRNA scaffold. Because the length of the continuous filament determines the stability of the MDA5-dsRNA interaction, the mechanism proposed here provides an explanation for how MDA5 uses filament assembly and disassembly dynamics to discriminate between self vs. nonself dsRNA.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Inmunidad Innata/fisiología , Conformación Proteica , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Adenosina Trifosfato/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Humanos , Hidrólisis , Helicasa Inducida por Interferón IFIH1 , Cinética , Microscopía Electrónica de Transmisión , Unión Proteica , ARN Bicatenario/inmunología , ARN Viral/inmunología
3.
Proc Natl Acad Sci U S A ; 108(52): 21010-5, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22160685

RESUMEN

MDA5, an RIG-I-like helicase, is a conserved cytoplasmic viral RNA sensor, which recognizes dsRNA from a wide-range of viruses in a length-dependent manner. It has been proposed that MDA5 forms higher-order structures upon viral dsRNA recognition or during antiviral signaling, however the organization and nature of this proposed oligomeric state is unknown. We report here that MDA5 cooperatively assembles into a filamentous oligomer composed of a repeating segmental arrangement of MDA5 dimers along the length of dsRNA. Binding of MDA5 to dsRNA stimulates its ATP hydrolysis activity with little coordination between neighboring molecules within a filament. Individual ATP hydrolysis in turn renders an intrinsic kinetic instability to the MDA5 filament, triggering dissociation of MDA5 from dsRNA at a rate inversely proportional to the filament length. These results suggest a previously unrecognized role of ATP hydrolysis in control of filament assembly and disassembly processes, thereby autoregulating the interaction of MDA5 with dsRNA, and provides a potential basis for dsRNA length-dependent antiviral signaling.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Conformación Proteica , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/genética , Dimerización , Electroforesis/métodos , Virus de la Encefalomiocarditis/genética , Humanos , Hidrólisis , Procesamiento de Imagen Asistido por Computador , Helicasa Inducida por Interferón IFIH1 , Mengovirus/genética , Microscopía Electrónica , Mutación Missense/genética , Receptores de Reconocimiento de Patrones/genética
4.
Biochemistry ; 48(37): 8830-41, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19640006

RESUMEN

The moenomycins are phosphoglycolipid antibiotics produced by Streptomyces ghanaensis and related organisms. The phosphoglycolipids are the only known active site inhibitors of the peptidoglycan glycosyltransferases, an important family of enzymes involved in the biosynthesis of the bacterial cell wall. Although these natural products have exceptionally potent antibiotic activity, pharmacokinetic limitations have precluded their clinical use. We previously identified the moenomycin biosynthetic gene cluster in order to facilitate biosynthetic approaches to new derivatives. Here, we report a comprehensive set of genetic and enzymatic experiments that establish functions for the 17 moenomycin biosynthetic genes involved in the synthesis of moenomycin and variants. These studies reveal the order of assembly of the full molecular scaffold and define a subset of seven genes involved in the synthesis of bioactive analogues. This work will enable both in vitro and fermentation-based reconstitution of phosphoglycolipid scaffolds so that chemoenzymatic approaches to novel analogues can be explored.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/química , Bambermicinas/biosíntesis , Bambermicinas/química , Genes Bacterianos , Familia de Multigenes , Farmacorresistencia Bacteriana , Eliminación de Gen , Glucolípidos/biosíntesis , Glucolípidos/química , Peptidoglicano Glicosiltransferasa/antagonistas & inhibidores , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/genética , Fosfolípidos/biosíntesis , Fosfolípidos/química , Streptomyces/metabolismo , Streptomyces lividans/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA