Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 25(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260278

RESUMEN

Obesity is commonly associated with hyperglycemia and type 2 diabetes and negatively affects chromium accumulation in tissues. Exercise prevents and controls obesity and type 2 diabetes. However, little information is available regarding chromium changes for regulating glucose homeostasis in high-fat diet (HFD)-fed animals/humans who exercise. Therefore, this study explored the effects of exercise and whether it alters chromium distribution in obese mice. Male C57BL6/J mice aged 4 weeks were randomly divided into two groups and fed either an HFD or standard diet (SD). Each group was subgrouped into two additional groups in which one subgroup was exposed to treadmill exercise for 12 weeks and the other comprised control mice. HFD-fed mice that exercised exhibited significant lower body weight gain, food/energy intake, daily food efficiency, and serum leptin and insulin levels than did HFD-fed control mice. Moreover, exercise reduced fasting glucose and enhanced insulin sensitivity and pancreatic ß-cell function, as determined by homeostasis model assessment (HOMA)-insulin resistance and HOMA-ß indices, respectively. Exercise also resulted in markedly higher chromium levels within the muscle, liver, fat tissues, and kidney but lower chromium levels in the bone and bloodstream in obese mice than in control mice. However, these changes were not noteworthy in SD-fed mice that exercised. Thus, exercise prevents and controls HFD-induced obesity and may modulate chromium distribution in insulin target tissues.


Asunto(s)
Glucemia/análisis , Cromo/metabolismo , Dieta Alta en Grasa/efectos adversos , Prueba de Esfuerzo/métodos , Obesidad/prevención & control , Animales , Modelos Animales de Enfermedad , Ingestión de Energía , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Obesidad/metabolismo , Distribución Aleatoria , Distribución Tisular
2.
Molecules ; 25(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218373

RESUMEN

Exposure to residues of antibiotics (e.g., sulfonamides) and insecticides (e.g., organophosphorus insecticides) in aquacultured food can adversely affect humans and animals and thus affect public health globally. Here, using a validated method, we examined the levels of residues of 12 sulfonamides as well as 18 organophosphorus insecticides in aquacultured fish in Taiwan. A total of 52 fish samples (i.e., 20 tilapia, 16 milk fish, and 16 perch samples) were obtained from Taiwanese aquafarms from June 2018 to October 2019. We detected 0.02 and 0.03 mg/kg of sulfamethazine (a sulfonamide) in one tilapia and one milk fish, respectively, and 0.02, 0.05, and 0.03 mg/kg of chlorpyrifos (an organophosphorus insecticide) in one tilapia, one milk fish, and one perch, respectively; thus, among the samples, 3.85% and 5.77% contained sulfonamides and organophosphorus insecticide residues, respectively. Furthermore, we assessed human health risk based on the estimated daily intakes (EDIs) of these residues: EDIs of sulfonamide and organophosphorus insecticide residues were <1.0% of the acceptable daily intake recommended by the Joint Food and Agriculture Organization of the United Nations/World Health Organization Expert Committee on Food Additives. The risk of exposure to sulfonamide and organophosphorus insecticide residue by consuming aquacultured fish in Taiwan was thus negligible, signifying no immediate health risk related to the consumption of fish. Our findings can constitute a reference in efforts geared toward ensuring food safety and monitoring veterinary drug and insecticide residue levels in aquacultured organisms. Residue levels in fish must be continually monitored to further determine possible effects of these residues on human health.


Asunto(s)
Monitoreo del Ambiente , Peces/metabolismo , Insecticidas/análisis , Compuestos Organofosforados/análisis , Sulfonamidas/análisis , Adulto , Animales , Femenino , Humanos , Límite de Detección , Masculino , Taiwán
3.
Molecules ; 24(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652756

RESUMEN

Phthalates are widely used plasticizers that can cause endocrine disruption, mutagenicity, and carcinogenic effects and can contaminate food through various pathways. Investigations are scanty on phthalate pollution of livestock and poultry meat and their dietary exposure to humans. The present study assessed residual levels of phthalates in unpackaged pork (30 samples) and unpackaged chicken (30 samples) and their relevance to meat consumption and health risks in the Taiwanese population. Phthalate quantity was assessed by liquid chromatography-tandem mass spectrometry; the materials included diisononyl phthalate, diisodecyl phthalate, benzyl butyl phthalate, di-2-ethylhexyl phthalate (DEHP), and di-n-butyl phthalate. The Taiwan Food and Drug Administration (TFDA) has established values of tolerable daily intake (TDI) for the five phthalates. The major compound detected was DEHP, which ranged from 0.62 to 0.80 mg/kg in two pork samples, and 0.42-0.45 mg/kg in three chicken samples. Collectively, 8.33% of the phthalate-residue-containing samples tested positive for DEHP. The concentrations of DEHP were lower than the screening value of 1.0 mg/kg, as defined by the TFDA. Health risk was calculated as the estimated daily intake (DI) for any likely adverse effects; the DI of DEHP residues was <1% of the TDI value. The estimated risk was insignificant and considered to be safe, indicating that there is no risk to the health of Taiwanese population due to meat consumption. However, it is suggested that a phthalate monitoring program in meat should be instituted for any possible effects in future on human health.


Asunto(s)
Contaminantes Ambientales/análisis , Análisis de los Alimentos , Ácidos Ftálicos/análisis , Carne de Cerdo/análisis , Aves de Corral , Animales , Cromatografía Liquida , Humanos , Taiwán , Espectrometría de Masas en Tándem
4.
Animals (Basel) ; 12(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077992

RESUMEN

The pharmacological pathway of para-toluenesulfonamide (PTS) restricts the kinase activity of the mammalian target of rapamycin, potentially leading to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical effect on tumorigenesis. We aimed to examine the antitumor effect of PTS or PTS combined with cisplatin on canine melanoma implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. The mice were randomly divided into four groups: control, cisplatin, PTS, and PTS combined with cisplatin. Mice treated with PTS or PTS combined with cisplatin had retarded tumor growth and increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase phosphorylation, decreased inflammatory cytokine levels, reduced inflammation-related factors, enhanced anti-inflammation-related factors, and inhibition of metastasis-related factors. Mice treated with PTS combined with cisplatin exhibited significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with those treated with cisplatin or PTS alone. PTS or PTS combined with cisplatin could retard canine melanoma growth and inhibit tumorigenesis. PTS and cisplatin were found to have an obvious synergistic tumor-inhibiting effect on canine melanoma. PTS alone and PTS combined with cisplatin may be antitumor agents for canine melanoma treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA