Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2309102121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232287

RESUMEN

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.

2.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38859757

RESUMEN

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Asunto(s)
Hierro , Hierro/química , Contaminantes Químicos del Agua/química , Halogenación , Agua Subterránea/química
3.
Environ Sci Technol ; 58(25): 11063-11073, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38869036

RESUMEN

Rhizosphere iron plaques derived from Fe-based nanomaterials (NMs) are a promising tool for sustainable agriculture. However, the requirement for flooded conditions to generate iron plaque limits the scope of the NM application. In this study, we achieved in situ Fenton oxidation of a highly chlorinated persistent organic pollutant (2,2',4,5,5'-pentachlorobiphenyl, PCB101) through iron plaque mediated by the interaction between α-Fe2O3 NMs and plant-rhizobacteria symbionts under dryland conditions. Mechanistically, the coexistence of α-Fe2O3 NMs and Pseudomonas chlororaphis JD37 stimulated alfalfa roots to secrete acidic and reductive agents as well as H2O2, which together mediated the rhizosphere Fenton reaction and converted α-Fe2O3 NMs into iron plaque rich in Fe(II)-silicate. Further verifications reproduced the Fenton reaction in vitro using α-Fe2O3 NMs and rhizosphere compounds, confirming the critical role of •OH in the oxidative degradation of PCB101. Significant reductions in PCB101 content by 18.6%, 42.9%, and 23.2% were respectively found in stem, leaf, and soil after a 120-d treatment, proving the effectiveness of this NMs-plant-rhizobacteria technique for simultaneously safe crop production and soil remediation. These findings can help expand the potential applications of nanobio interaction and its mediated iron plaque generation for both agricultural practice and soil remediation.


Asunto(s)
Hierro , Contaminantes del Suelo , Hierro/metabolismo , Contaminantes del Suelo/metabolismo , Nanoestructuras/química , Compuestos Férricos , Suelo/química , Rizosfera
4.
J Environ Sci (China) ; 143: 23-34, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644020

RESUMEN

Heavy metal(loid)s (HMs) pollution has become a common and complex problem in industrial parks due to rapid industrialization and urbanization. Here, soil and groundwater were sampled from a retired industrial park to investigate the pollution characteristics of HMs. Results show that Ni, Pb, Cr, Zn, Cd, and Cu were the typical HMs in the soil. Source analysis with the positive matrix factorization model indicates that HMs in the topsoil stemmed from industrial activities, traffic emission, and natural source, and the groundwater HMs originated from industrial activities, groundwater-soil interaction, groundwater-rock interaction, and atmosphere deposition. The sequential extraction of soil HMs reveals that As and Hg were mainly distributed in the residue fraction, while Ni, Pb, Cr, Zn, Cd, and Cu mainly existed in the mobile fraction. Most HMs either in the total concentration or in the bioavailable fraction preferred to retain in soil as indicated by their high soil-water partitioning coefficients (Kd), and the Kd values were correlated with soil pH, groundwater redox potential, and dissolved oxygen. The relative stable soil-groundwater circumstance and the low active fraction contents limited the vertical migration of soil HMs and their release to groundwater. These findings increase our knowledge about HMs pollution characteristics of traditional industrial parks and provide a protocol for HMs pollution scrutinizing in large zones.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes Químicos del Agua , Metales Pesados/análisis , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Suelo/química , China
5.
Environ Sci Technol ; 57(35): 12991-13003, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37608586

RESUMEN

The biomolecular responses of bacteria to 2D nanosheets that result from nano-bio interfacial interactions remain to be thoroughly examined. Herein, Fourier transform infrared (FTIR) multivariate and 2D correlation analyses were performed to assess the composition and conformational changes in bacterial biomacromolecules (lipids, polysaccharides, and carbohydrates) upon exposure to Ti3C2Tx nanosheets. General toxicity assays, 3D excitation-emission matrix fluorescence analyses, extended Derjaguin-Landau-Verwey-Overbeek theory interaction calculations, and isothermal titration calorimetry were also performed. Our results demonstrate that Ti3C2Tx nanosheets considerably impact Gram-positive bacteria (Bacillus subtilis), causing oxidative damage and inactivation by preferentially interacting with and disrupting the cell walls. The bilayer membrane structure of Gram-negative bacteria (Escherichia coli) endows them with increased resistance to Ti3C2Tx nanosheets. The unmodified nanosheets had a higher affinity to bacterial protein components with lower toxicity due to their susceptibility to oxidation. Surface modification with KOH or hydrazine (HMH), particularly HMH, induced stronger dispersion, antioxidation, and affinity to bacterial phospholipids, which resulted in severe cell membrane lipid peroxidation and bacterial inactivation. These findings provide valuable insight into nano-bio interfacial interactions, which can facilitate the development of antimicrobial and antifouling surfaces and contribute to the evaluation of the environmental risks of nanomaterials.


Asunto(s)
Proteínas Bacterianas , Titanio , Antioxidantes , Bacillus subtilis , Escherichia coli
6.
Environ Sci Technol ; 57(45): 17178-17188, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37903754

RESUMEN

Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure-property-activity relationships. The materials' reactivity-selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements' amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.


Asunto(s)
Restauración y Remediación Ambiental , Nanopartículas , Nanoestructuras , Nanopartículas/química
7.
Environ Sci Technol ; 57(34): 12771-12781, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37583057

RESUMEN

Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (Pseudomonas chlororaphis, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI20), 100 nm (nZVI100), and 5 µm; iron oxide nanomaterials (α-Fe2O3, γ-Fe2O3, and Fe3O4) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L-1) alone could not degrade aqueous PCB28 (0.1 mg L-1) under dark or aerobic conditions, nZVI20, nZVI100, α-Fe2O3, and Fe2+ promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI100 cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD+ conversion, promoting O2*- generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.


Asunto(s)
Contaminantes Ambientales , Nanoestructuras , Bifenilos Policlorados , Especies Reactivas de Oxígeno , Hierro
8.
Environ Sci Technol ; 57(32): 12105-12116, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531556

RESUMEN

Intracellular antibiotic resistance genes (iARGs) constitute the important part of wastewater ARGs and need to be efficiently removed. However, due to the dual protection of intracellular DNA by bacterial membranes and the cytoplasm, present disinfection technologies are largely inefficient in iARG degradation. Herein, we for the first time found that erythrosine (ERY, an edible dye) could efficiently degrade iARGs by producing abundant 1O2 under visible light. Seven log antibiotic-resistant bacteria were inactivated within only 1.5 min, and 6 log iARGs were completely degraded within 40 min by photosensitized ERY (5.0 mg/L). A linear relationship was established between ARG degradation rate constants and 1O2 concentrations in the ERY photosensitizing system. Surprisingly, a 3.2-fold faster degradation of iARGs than extracellular ARGs was observed, which was attributed to the unique indirect oxidation of iARGs induced by 1O2. Furthermore, ERY photosensitizing was effective for iARG degradation in real wastewater and other photosensitizers (including Rose Bengal and Phloxine B) of high 1O2 yields could also achieve efficient iARG degradation. The findings increase our knowledge of the iARG degradation preference by 1O2 and provide a new strategy of developing technologies with high 1O2 yield, like ERY photosensitizing, for efficient iARG removal.


Asunto(s)
Antibacterianos , Eritrosina , Antibacterianos/farmacología , Eritrosina/farmacología , Aguas Residuales , Farmacorresistencia Microbiana/genética , Bacterias/genética , Genes Bacterianos
9.
Environ Sci Technol ; 57(32): 12042-12052, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523858

RESUMEN

This study investigated the degradation performance and mechanism of extracellular antibiotic resistance genes (eARGs) by nematodes using batch degradation experiments, mutant strain validation, and phylogenetic tree construction. Caenorhabditis elegans, a representative nematode, effectively degraded approximately 99.999% of eARGs (tetM and kan) in 84 h and completely deactivated them within a few hours. Deoxyribonuclease (DNase) II encoded by nuc-1 in the excretory and secretory products of nematodes was the primary mechanism. A neighbor-joining phylogenetic tree indicated the widespread presence of homologs of the NUC-1 protein in other nematodes, such as Caenorhabditis remanei and Caenorhabditis brenneri, whose capabilities of degrading eARGs were then experimentally confirmed. C. elegans remained effective in degrading eARGs under the effects of natural organic matter (5, 10, and 20 mg/L, 5.26-6.22 log degradation), cation (2.0 mM Mg2+ and 2.5 mM Ca2+, 5.02-5.04 log degradation), temperature conditions (1, 20, and 30 °C, 1.21-5.26 log degradation), and in surface water and wastewater samples (4.78 and 3.23 log degradation, respectively). These findings highlight the pervasive but neglected role of nematodes in the natural decay of eARGs and provide novel approaches for antimicrobial resistance mitigation biotechnology by introducing nematodes to wastewater, sludge, and biosolids.


Asunto(s)
Caenorhabditis elegans , Aguas Residuales , Animales , Caenorhabditis elegans/genética , Antibacterianos/farmacología , Filogenia , Farmacorresistencia Microbiana/genética
10.
Environ Sci Technol ; 57(51): 21917-21926, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38091483

RESUMEN

Co-occurrence of organic contaminants and arsenic oxoanions occurs often at polluted groundwater sites, but the effect of arsenite on the reactivity of sulfidized nanoscale zerovalent iron (SNZVI) used to remediate groundwater has not been evaluated. Here, we study the interaction of arsenite [As(III)] with SNZVI at the individual-particle scale to better understand the impacts on the SNZVI properties and reactivity. Surface and intraparticle accumulation of As was observed on hydrophilic FeS-Fe0 and hydrophobic FeS2-Fe0 particles, respectively. X-ray absorption spectroscopy indicated the presence of realgar-like As-S and elemental As0 species at low and high As/Fe concentration ratios, respectively. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis identified As-containing particles both with and without Fe. The probability of finding As-containing particles without Fe increased with the S-induced hydrophobicity of SNZVI. The interactions of SNZVI materials with coexisting arsenite inhibited their reactivity with water (∼5.8-230.7-fold), trichloroethylene (∼3.6-67.5-fold), and florfenicol (∼1.1-5.9-fold). However, the overall selectivity toward trichloroethylene and florfenicol relative to water was improved (up to 9.0-fold) because the surface-associated As increased the SNZVI hydrophobicity. These results indicate that reactions of SNZVI with arsenite can remove As from groundwater and improve the properties of SNZVI for dehalogenation selectivity.


Asunto(s)
Arsénico , Arsenitos , Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Hierro/química , Tricloroetileno/química , Contaminantes Químicos del Agua/química , Agua Subterránea/química , Agua
11.
J Environ Sci (China) ; 128: 171-180, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36801033

RESUMEN

Polychlorinated biphenyls (PCBs) with different chlorine substitution patterns often coexist in e-waste-processing sites. However, the single and combined toxicity of PCBs to soil organisms and the influence of chlorine substitution patterns remain largely unknown. Herein, we evaluated the distinct in vivo toxicity of PCB28 (a trichlorinated PCB), PCB52 (a tetrachlorinated PCB), PCB101 (a pentachlorinated PCB), and their mixture to earthworm Eisenia fetida in soil, and looked into the underlining mechanisms in an in vitro test using coelomocytes. After a 28-days exposure, all PCBs (up to 10 mg/kg) were not fatal to earthworms, but could induce intestinal histopathological changes and microbial community alterations in the drilosphere system, along with a significant weight loss. Notably, pentachlorinated PCBs with a low bioaccumulation ability showed greater inhibitory effects on the growth of earthworm than lowly chlorinated PCBs, suggesting that bioaccumulation was not the main determinant of chlorine substitution-dependent toxicity. Furthermore, in vitro assays showed that the highly chlorinated PCBs induced a high-percentage apoptosis of eleocytes in the coelomocytes and significantly activated antioxidant enzymes, indicating that the distinct cellular vulnerability to lowly/highly chlorinated PCBs was the main contributor to the PCBs toxicity. These findings emphasize the specific advantage of using earthworms in the control of lowly chlorinated PCBs in soil due to their high tolerance and accumulation ability.


Asunto(s)
Oligoquetos , Bifenilos Policlorados , Contaminantes del Suelo , Animales , Cloro/toxicidad , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/análisis , Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Halógenos/farmacología
12.
Angew Chem Int Ed Engl ; 62(12): e202215296, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36698285

RESUMEN

Metal-organic frameworks (MOFs) are potential porous adsorbents for benzene, toluene, ethylbenzene and xylene (BTEX). A novel MOF, using low toxic aluminum (Al) as the metal, named as ZJU-620(Al), with uniform micropore size of 8.37±0.73 Šand specific surface area of 1347 m2 g-1 , was synthesized. It is constructed by one-dimensional rod-shaped AlO6 clusters, formate ligands and 4,4',4''-(2,4,6-trimethylbenzene-1,3,5-triyl) tribenzoic ligands. ZJU-620(Al) exhibits excellent chemical-thermal stability and adsorption for trace BTEX, e.g., benzene adsorption of 3.80 mmol g-1 at P/P0 =0.01 and 298 K, which is the largest one reported. Using Grand Canonical Monte Carlo simulations and Single-crystal X-ray diffraction analyses, it was observed that the excellent adsorption could be attributed to the high affinity of BTEX molecules in ZJU-620(Al) micropores because the kinetic diameters of BTEX are close up to the pore size of ZJU-620(Al).

13.
Environ Sci Technol ; 56(6): 3397-3406, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35235289

RESUMEN

In this study, we analyzed the temporal trend of polycyclic aromatic hydrocarbons (PAHs) in China using data reported over the past 20 years. We found that the total concentrations of low molecular weight PAHs (CΣLPAHs) in surface water and sediments were positively correlated with their total emissions (EΣLPAHs), which increased between 2000 and 2008, then decreased until 2017. Additionally, the total concentrations of high molecular weight PAHs (C∑HPAHs) in surface water and sediments were positively correlated with their total emissions (EΣHPAHs), which increased significantly from 2000 to 2014 and then plateaued. Two future scenarios were assessed to explore C∑LPAHs and C∑HPAHs in surface water and sediments. PAH emissions were reduced by technological improvement in 2030 for coal consumption in Scenario 1 and for control of biomass burning in Scenario 2. Scenario 1 was more efficient than Scenario 2 in reducing C∑HPAHs in the surface water and sediments of China for the areas where CΣHPAHs in surface water exceeded the annual average standard (i.e., 30 ng L-1), with reductions of 38 and 24% in Scenarios 1 and 2, respectively. The observed relationships in this study can provide tools for emission reduction policies in the future.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Peso Molecular , Hidrocarburos Policíclicos Aromáticos/análisis , Agua , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Technol ; 56(7): 4489-4497, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35316036

RESUMEN

Surface modification of microscale Fe powder with nitrogen has emerged recently to improve the reactivity of Fe0 for dechlorination. However, it is unclear how an even incorporation of a crystalline iron nitride phase into Fe0 nanoparticles affects their physicochemical properties and performance, or if Fe0 nanoparticles with a varied nitridation degree will act differently. Here, we synthesized nitridated Fe0 nanoparticles with an even distribution of N via a sol-gel and pyrolysis method. Nitridation expanded the Fe0 lattice and provided the Fe4N species, making the materials more hydrophobic and accelerating the electron transfer, compared to un-nitridated Fe0. These properties well explain their reactivity and selectivity toward trichloroethylene (TCE). The TCE degradation rate by nitridated Fe0 (up to 4.8 × 10-2 L m-2 h-1) was much higher (up to 27-fold) than that by un-nitridated Fe0, depending on the nitridation degree. The materials maintained a high electron efficiency (87-95%) due to the greatly suppressed water reactivity (109-127 times lower than un-nitridated Fe0). Acetylene was accumulated as the major product of TCE dechlorination via ß-elimination. These findings suggest that the nitridation of Fe0 nanoparticles can change the materials' physicochemical properties, providing high reactivity and selectivity toward chlorinated contaminants for in situ groundwater remediation.


Asunto(s)
Agua Subterránea , Nanopartículas , Tricloroetileno , Contaminantes Químicos del Agua , Agua Subterránea/química , Hierro/química , Nitrógeno , Tricloroetileno/química , Contaminantes Químicos del Agua/química
15.
Environ Sci Technol ; 56(9): 5508-5519, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35420416

RESUMEN

The biotransformation of 2D nanomaterials is still poorly understood, although their environmental fates are becoming an increasing concern with their broad applications. Here, we found that Ti3C2Tx nanosheets, a typical 2D nanomaterial, could be oxidized by reactive oxygen species (ROS) produced by both Gram-negative (Escherichia coli and Shewanella oneidensis) and Gram-positive (Bacillus subtilis) bacteria, with the formation of titanium dioxide (TiO2) on the nanosheet surfaces and impairment of structural integrity. Specifically, Ti3C2Tx nanosheets stimulated bacterial respiration Complex I, leading to increased generation of extracellular O2•- and the formation of H2O2 and •OH via Fenton-like reactions, which intensified the oxidation of the nanosheets. Surface modifications with KOH and hydrazine (HMH), especially HMH, could limit bacterial oxidation of the nanosheets. These findings reveal a common but overlooked process in which oxygen-respiring bacteria are capable of oxidizing 2D nanosheets, providing new knowledge for environmental fate evaluation and future design of functional 2D nanomaterials.


Asunto(s)
Peróxido de Hidrógeno , Nanoestructuras , Biotransformación , Escherichia coli/metabolismo , Nanoestructuras/química , Especies Reactivas de Oxígeno/metabolismo , Respiración
16.
Environ Sci Technol ; 56(8): 4915-4925, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35389637

RESUMEN

Nanoscale zero-valent iron (nZVI) provides a promising solution for organochlorine (OC)-contaminated soil remediation. However, the interactions among nZVI, soil organic matter (SOM), and indigenous dechlorinating bacteria are intricate, which may result in unascertained effects on the reductive degradation of OCs and merits specific investigation. Herein, we isolated an indigenous dehalogenation bacterium (Burkholderia ambifaria strain L3) from a paddy soil and further investigated the biodechlorination of pentachlorophenol (PCP) with individual and a combination of SOM and nZVI. In comparison with individual-strain L3 treatment, the cotreatment with nZVI or SOM increased the removal efficiency of PCP from 34.4 to 44.3-54.2% after 15 day cultivation. More importantly, a synergistic effect of SOM and nZVI was observed on the PCP removal by strain L3, and the PCP removal efficiency reached up to 75.3-84.5%. Other than the biodegradation through ortho- and meta-substitution under the individual application of SOM or nZVI, PCP was further biodegraded to 2,4,6-trichlorophenol (TCP) through para-substitution by the isolated bacteria with the cotreatment of SOM and nZVI. The main roles of the nZVI-SOM cotreatment in the biodegradation included the SOM-facilitated microbial proliferation, the nZVI-promoted microbial transformation of SOM, and the induced higher electron transport capacity of redox Fe-PCP biocycling. These findings provide a novel insight into the action of nZVI in environmental remediations.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Hierro , Suelo , Contaminantes del Suelo/análisis
17.
Environ Sci Technol ; 56(18): 13066-13075, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36053113

RESUMEN

The interfacial interaction between pollutants and organisms is a critical process in controlling the environmental fates of pollutants; however, in situ assay of the interaction is still a great challenge. Here, in situ determination of dissociation constants (Kd) for ZnO nanoparticles (ZnO NPs) from live algal cells disturbed by different-charged surfactants was established using microscale thermophoresis (MST). Moreover, in situ measurement of the adhesion force between the ZnO NPs probe and live single cell was performed using an atomic force microscope (AFM). Results showed that the cationic cetyltrimethylammonium chloride (CTAC) and anionic sodium dodecylbenzenesulfonate (SDBS) increased but nonionic Triton X-100 (TX-100) decreased the adhesion of ZnO NPs on cells. However, the force signature exhibited a smooth single retracted peak at short distances in the SDBS- and TX-100-treated groups, distinguished from the "see-saw" pattern peak in the CTAC-treated groups. The extended Derjaguin-Landau-Verway-Overbeek (XDLVO) calculation further confirmed that SDBS and TX-100 mainly disturbed the short-range hydration on the NP-cell interface, while CTAC reduced the long-range electrostatic repulsion. Furthermore, an excellent linear correlation between Zn bioaccumulation and two parameters (Kd and adhesion force) indicated that NP-cell interfacial interactions affected Zn bioaccumulation. Thus, in situ assay provides a quantitative basis for the pollutant-organism interfacial interaction to evaluate the environmental fate and ecological risk of pollutants.


Asunto(s)
Contaminantes Ambientales , Óxido de Zinc , Cetrimonio , Octoxinol , Polietilenglicoles , Tensoactivos
18.
Anal Chem ; 93(29): 10187-10195, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34254793

RESUMEN

Nanoscale zero-valent iron (nZVI) has become one of the most used engineered nanoparticles for soil remediation. However, isolating nZVI particles from a complex soil matrix for their accurate particle characterizations and transport distance measurements is still challenging. Here, this study established a new analysis approach combining ultrasound-assisted solvent extraction, magnetic separation, and single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) analysis to isolate nZVI particles from soils and quantify their concentration and size. The interference from natural Fe-containing substances on nZVI analysis could be efficiently minimized by magnetic separation and dilution. After the optimization of extraction solvent type/concentration (i.e., 2.5 mM tetrasodium pyrophosphate) and ultrasonication time (i.e., 30 min), acceptable recoveries in both particle number (62.0 ± 10.8%-96.1 ± 4.8%) and Fe mass (70.6 ± 12.0%-119 ± 18%) could be achieved for different sizes (50 and 100 nm) and concentrations (50, 100, and 500 µg g-1) of spiked nZVI from six soils. The detection limits of particle size and concentration were approximately 43.1 nm and 50 µg nZVI per gram soil, respectively. These results provide a feasible approach to quantify the nZVI concentration and size in complex soil matrices, which will allow the improvements to characterize and track the nZVI particles in the field, promote the use of nZVI particles for soil remediation, and better assess their environmental implications.


Asunto(s)
Restauración y Remediación Ambiental , Nanopartículas del Metal , Contaminantes del Suelo , Hierro , Suelo , Contaminantes del Suelo/análisis
19.
Anal Chem ; 93(4): 1962-1968, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33439629

RESUMEN

Nanoscale silver (n-Ag) including silver nanoparticles (Ag-NPs), silver chloride nanoparticles (AgCl-NPs), and silver sulfide nanoparticles (Ag2S-NPs) and their corresponding ionic counterpart, namely, dissolved Ag, may coexist in soils. X-ray absorption near edge spectroscopy (XANES) is used to elucidate the speciation of n-Ag in soils, whereas it possesses drawbacks like high costs, rare availability of the instrument, and providing semiquantitative data. We developed a new method for the identification and speciation of n-Ag in soils and sediments based on a sequential extraction technique coupled with inductively coupled plasma optical emission spectrometry. Extraction conditions were first evaluated, establishing the optimal extraction procedure; Ag-NPs, AgCl-NPs, and dissolved Ag in soil were simultaneously extracted by using an aqueous solution of 10 mM tetrasodium pyrophosphate, followed by selective isolation and quantification via AgCl-NPs dissolution (4.45 M aqueous ammonia), centrifugation (Ag-NPs), and detection. The Ag2S-NPs remaining in the soil were then extracted with Na2S solution at pH 7.0 through selective complexation. Optimal recoveries of Ag-NPs, AgCl-NPs, Ag2S-NPs, and dissolved Ag were 99.1 ± 2.4%, 112.0 ± 3.4%, 96.4 ± 4.0%, and 112.2 ± 4.1%, respectively. The method was validated to investigate the speciation of n-Ag in soils and sediments, exhibiting the distribution of Ag-NPs, AgCl-NPs, Ag2S-NPs, and dissolved Ag in each sample, wherein Ag2S-NPs, the major species of n-Ag, accounted for 35.42-68.87% of the total Ag. The results of n-Ag speciation in soil are comparable to those obtained through the linear combination fitting of XANES. This method thus is a powerful, yet convenient, substitute for XANES to understand the speciation of n-Ag in complex solid matrices.

20.
Environ Sci Technol ; 55(13): 9305-9316, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138538

RESUMEN

Interfacial interactions between antibiotic resistance genes (ARGs) and metallic nanomaterials (NMs) lead to adsorption and fragmentation of ARGs, which can provide new avenues for selecting NMs to control ARGs. This study compared the adsorptive interactions of ARGs (tetM-carrying plasmids) with two metallic NMs (ca. 20 nm), i.e., titanium dioxide (nTiO2) and zero-valent iron (nZVI). nZVI had a higher adsorption rate (0.06 min-1) and capacity (4.29 mg/g) for ARGs than nTiO2 (0.05 min-1 and 2.15 mg/g, respectively). No desorption of ARGs from either NMs was observed in the adsorptive background solution, isopropanol or urea solutions, but nZVI- and nTiO2-adsorbed ARGs were effectively desorbed in NaOH and NaH2PO4 solutions, respectively. Molecular dynamics simulation revealed that nTiO2 mainly bound with ARGs through electrostatic attraction, while nZVI bound with PO43- of the ARG phosphate backbones through Fe-O-P coordination. The ARGs desorbed from nTiO2 remained intact, while the desorbed ARGs from nZVI were splintered into small fragments irrelevant to DNA base composition or sequence location. The ARG removal by nZVI remained effective in the presence of PO43-, natural organic matter, or protein at environmentally relevant concentrations and in surface water samples. These findings indicate that nZVI can be a promising nanomaterial to treat ARG pollution.


Asunto(s)
Nanoestructuras , Contaminantes Químicos del Agua , Adsorción , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Hierro , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA