RESUMEN
Higher cognitive functions such as linguistic comprehension must ultimately relate to perceptual systems in the brain, though how and why this forms remains unclear. Different brain networks that mediate perception when hearing real-world natural sounds has recently been proposed to respect a taxonomic model of acoustic-semantic categories. Using functional magnetic resonance imaging (fMRI) with Chinese/English bilingual listeners, the present study explored whether reception of short spoken phrases, in both Chinese (Mandarin) and English, describing corresponding sound-producing events would engage overlapping brain regions at a semantic category level. The results revealed a double-dissociation of cortical regions that were preferential for representing knowledge of human versus environmental action events, whether conveyed through natural sounds or the corresponding spoken phrases depicted by either language. These findings of cortical hubs exhibiting linguistic-perceptual knowledge links at a semantic category level should help to advance neurocomputational models of the neurodevelopment of language systems.