RESUMEN
Regulatory T cells (Treg cells) are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, in the present study we show that interleukin (IL)-27 is specifically produced by intestinal Treg cells to regulate helper T17 cell (TH17 cell) immunity. Selectively increased intestinal TH17 cell responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+CD62Llo Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a new Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.
Asunto(s)
Interleucina-27 , Linfocitos T Reguladores , Ratones , Animales , Linfocitos T Colaboradores-Inductores , Tolerancia Inmunológica , Inmunidad Celular , Células Th17RESUMEN
BACKGROUND: Simnotrelvir is an oral 3-chymotrypsin-like protease inhibitor that has been found to have in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and potential efficacy in a phase 1B trial. METHODS: In this phase 2-3, double-blind, randomized, placebo-controlled trial, we assigned patients who had mild-to-moderate coronavirus disease 2019 (Covid-19) and onset of symptoms within the past 3 days in a 1:1 ratio to receive 750 mg of simnotrelvir plus 100 mg of ritonavir or placebo twice daily for 5 days. The primary efficacy end point was the time to sustained resolution of symptoms, defined as the absence of 11 Covid-19-related symptoms for 2 consecutive days. Safety and changes in viral load were also assessed. RESULTS: A total of 1208 patients were enrolled at 35 sites in China; 603 were assigned to receive simnotrelvir and 605 to receive placebo. Among patients in the modified intention-to-treat population who received the first dose of trial drug or placebo within 72 hours after symptom onset, the time to sustained resolution of Covid-19 symptoms was significantly shorter in the simnotrelvir group than in the placebo group (180.1 hours [95% confidence interval {CI}, 162.1 to 201.6] vs. 216.0 hours [95% CI, 203.4 to 228.1]; median difference, -35.8 hours [95% CI, -60.1 to -12.4]; P = 0.006 by Peto-Prentice test). On day 5, the decrease in viral load from baseline was greater in the simnotrelvir group than in the placebo group (mean difference [±SE], -1.51±0.14 log10 copies per milliliter; 95% CI, -1.79 to -1.24). The incidence of adverse events during treatment was higher in the simnotrelvir group than in the placebo group (29.0% vs. 21.6%). Most adverse events were mild or moderate. CONCLUSIONS: Early administration of simnotrelvir plus ritonavir shortened the time to the resolution of symptoms among adult patients with Covid-19, without evident safety concerns. (Funded by Jiangsu Simcere Pharmaceutical; ClinicalTrials.gov number, NCT05506176.).
Asunto(s)
COVID-19 , Inhibidores de Proteasa de Coronavirus , Adulto , Humanos , Administración Oral , Antivirales/administración & dosificación , Antivirales/efectos adversos , Antivirales/farmacología , Antivirales/uso terapéutico , China , Proteínas M de Coronavirus/antagonistas & inhibidores , Proteínas M de Coronavirus/metabolismo , Inhibidores de Proteasa de Coronavirus/administración & dosificación , Inhibidores de Proteasa de Coronavirus/efectos adversos , Inhibidores de Proteasa de Coronavirus/farmacología , Inhibidores de Proteasa de Coronavirus/uso terapéutico , COVID-19/metabolismo , COVID-19/terapia , Tratamiento Farmacológico de COVID-19/métodos , Método Doble Ciego , Ritonavir/administración & dosificación , Ritonavir/efectos adversos , Ritonavir/farmacología , Ritonavir/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Factores de Tiempo , Combinación de MedicamentosRESUMEN
Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.
Asunto(s)
Evolución Clonal , Leucemia Mieloide Aguda/genética , Mutación , Adulto , Anciano , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Estudio de Asociación del Genoma Completo , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/fisiopatología , Masculino , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , Recurrencia , Piel/metabolismo , Adulto JovenRESUMEN
DNA methyltransferase type 1 (DNMT1) is a major enzyme involved in maintaining the methylation pattern after DNA replication. Mutations in DNMT1 have been associated with autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). We used fibroblasts, induced pluripotent stem cells (iPSCs) and induced neurons (iNs) generated from patients with ADCA-DN and controls, to explore the epigenomic and transcriptomic effects of mutations in DNMT1. We show cell type-specific changes in gene expression and DNA methylation patterns. DNA methylation and gene expression changes were negatively correlated in iPSCs and iNs. In addition, we identified a group of genes associated with clinical phenotypes of ADCA-DN, including PDGFB and PRDM8 for cerebellar ataxia, psychosis and dementia and NR2F1 for deafness and optic atrophy. Furthermore, ZFP57, which is required to maintain gene imprinting through DNA methylation during early development, was hypomethylated in promoters and exhibited upregulated expression in patients with ADCA-DN in both iPSC and iNs. Our results provide insight into the functions of DNMT1 and the molecular changes associated with ADCA-DN, with potential implications for genes associated with related phenotypes.
Asunto(s)
Ataxia Cerebelosa , Sordera , Humanos , Ataxia Cerebelosa/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Transcriptoma/genética , Epigenómica , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/genética , Sordera/genética , Mutación , ADNRESUMEN
Severe fever with thrombocytopenia syndrome (SFTS) virus and hantavirus are categorized under the Bunyavirales order. The severe disease progression in both SFTS and hemorrhagic fever with renal syndrome (HFRS) is associated with cytokine storms. This study aimed to explore the differences in cytokine profiles and immune responses between the two diseases. A cross-sectional, single-center study involved 100 participants, comprising 46 SFTS patients, 48 HFRS patients, and 6 healthy controls. The study employed the Luminex cytokine detection platform to measure 48 cytokines. The differences in cytokine profiles and immune characteristics between the two diseases were further analyzed using multiple linear regression, principal component analysis, and random forest method. Among the 48 cytokines tested, 30 showed elevated levels in SFTS and/or HFRS compared to the healthy control group. Furthermore, there were 19 cytokines that exhibited significant differences between SFTS and HFRS. Random forest analysis suggested that TRAIL and CTACK were predictive of SFTS, while IL2Ralpha, MIG, IL-8, IFNalpha2, HGF, SCF, MCP-3, and PDGFBB were more common with HFRS. It was further verified by the receiver operating characteristic with area under the curve >0.8 and P-values <0.05, except for TRAIL. Significant differences were observed in the cytokine profiles of SFTS and HFRS, with TRAIL, IL2Ralpha, MIG, and IL-8 being the top 4 cytokines that most clearly distinguished the two diseases. IMPORTANCE: SFTS and HFRS differ in terms of cytokine immune characteristics. TRAIL, IL-2Ralpha, MIG, and IL-8 were the top 4 that differed markedly between SFTS and HFRS.
Asunto(s)
Citocinas , Fiebre Hemorrágica con Síndrome Renal , Síndrome de Trombocitopenia Febril Grave , Humanos , Fiebre Hemorrágica con Síndrome Renal/inmunología , Fiebre Hemorrágica con Síndrome Renal/virología , Fiebre Hemorrágica con Síndrome Renal/sangre , Citocinas/sangre , Masculino , Síndrome de Trombocitopenia Febril Grave/inmunología , Síndrome de Trombocitopenia Febril Grave/virología , Persona de Mediana Edad , Femenino , Estudios Transversales , Adulto , Anciano , Phlebovirus/inmunologíaRESUMEN
Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement and bulbar-associated dysfunction. The presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01â¼DQB1*05:01, supports an autoimmune basis. In this study, a multicentric human leukocyte antigen (HLA) study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05â¼DQB1*05:01, HLA-DQA1*01:01â¼DQB1*05:01 and HLA-DQA1*01:04â¼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11â years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared with one control carrying HLA-DQA1*01:05â¼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T-cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.
Asunto(s)
Cadenas beta de HLA-DQ , Cadenas HLA-DRB1 , Humanos , Cadenas HLA-DRB1/genética , Masculino , Cadenas beta de HLA-DQ/genética , Femenino , Persona de Mediana Edad , Adulto , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/inmunología , Anciano , Autoanticuerpos/inmunología , Predisposición Genética a la Enfermedad , Adulto Joven , Adolescente , GenotipoRESUMEN
Foxp3(+) regulatory T (Treg) cells maintain immune homeostasis by limiting different types of inflammatory responses. Here, we report that miR-146a, one of the miRNAs prevalently expressed in Treg cells, is critical for their suppressor function. The deficiency of miR-146a in Treg cells resulted in a breakdown of immunological tolerance manifested in fatal IFNγ-dependent immune-mediated lesions in a variety of organs. This was likely due to augmented expression and activation of signal transducer and activator transcription 1 (Stat1), a direct target of miR-146a. Likewise, heightened Stat1 activation in Treg cells subjected to a selective ablation of SOCS1, a key negative regulator of Stat1 phosphorylation downstream of the IFNγ receptor, was associated with analogous Th1-mediated pathology. Our results suggest that specific aspects of Treg suppressor function are controlled by a single miRNA and that an optimal range of Stat1 activation is important for Treg-mediated control of Th1 responses and associated autoimmunity.
Asunto(s)
MicroARNs/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Interferón gamma/inmunología , Ratones , Ratones Noqueados , MicroARNs/genética , Factor de Transcripción STAT1/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunologíaRESUMEN
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Asunto(s)
Biomarcadores , Cardiomiopatías , Metabolómica , Proteómica , Humanos , Cardiomiopatías/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/terapia , Cardiomiopatías/genética , Animales , Proteómica/métodos , Metabolómica/métodos , Modelos Animales de Enfermedad , Espectrometría de Masas , Ratones , Células Madre Pluripotentes Inducidas/metabolismoRESUMEN
Narcolepsy type 1 (NT1), a disorder caused by hypocretin/orexin (HCRT) cell loss, is associated with human leukocyte antigen (HLA)-DQ0602 (98%) and T cell receptor (TCR) polymorphisms. Increased CD4+ T cell reactivity to HCRT, especially DQ0602-presented amidated C-terminal HCRT (HCRTNH2), has been reported, and homology with pHA273-287 flu antigens from pandemic 2009 H1N1, an established trigger of the disease, suggests molecular mimicry. In this work, we extended DQ0602 tetramer and dextramer data to 77 cases and 44 controls, replicating our prior finding and testing 709 TCRs in Jurkat 76 T cells for functional activation. We found that fewer TCRs isolated with HCRTNH2 (â¼11%) versus pHA273-287 or NP17-31 antigens (â¼50%) were activated by their ligand. Single-cell characterization did not reveal phenotype differences in influenza versus HCRTNH2-reactive T cells, and analysis of TCR CDR3αß sequences showed TCR clustering by responses to antigens but no cross-peptide class reactivity. Our results do not support the existence of molecular mimicry between HCRT and pHA273-287 or NP17-31.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Narcolepsia , Orexinas , Receptores de Antígenos de Linfocitos T , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana , Narcolepsia/inmunología , Narcolepsia/fisiopatología , Orexinas/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Virales/inmunologíaRESUMEN
Severe fever with thrombocytopenia syndrome (SFTS) is a highly fatal disease. Droplet digital polymerase chain reaction (ddPCR) presents unparalleled sensitivity and enables absolute quantification of viral load. In this prospective study, we enrolled 111 patients with SFTS and collected 259 continuous samples. Our findings unveil a robust reverse transcription (RT)-ddPCR method for SFTS with a limit of detection of 2.46 copies/µL (95% CI, 1.50-11.05), surpassing the sensitivity of RT-quantitative polymerase chain reaction at 103.29 copies/µL (95% CI, 79.69-216.35). Longitudinal cohort analysis revealed significantly higher RT-ddPCR detection rates at days 10 to 11, 13 to 14, and ≥15 of the disease course as compared with RT-quantitative polymerase chain reaction (P < .05). Positive RT-ddPCR results were associated with declined platelet and elevated aspartate aminotransferase and lactate dehydrogenase on the same day vs negative RT-ddPCR samples. RT-ddPCR exhibits commendable diagnostic efficacy in SFTS, and it remains detectable in blood samples from patients with an extended disease course. Furthermore, RT-ddPCR correlates with clinical laboratory tests, furnishing valuable reference data for clinical diagnosis.
RESUMEN
BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.
Asunto(s)
Tetracloruro de Carbono , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones Noqueados , Receptores Acoplados a Proteínas G , Transducción de Señal , Proteína smad7 , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/inducido químicamente , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Estrelladas Hepáticas/metabolismo , Proteína smad7/metabolismo , Proteína smad7/genética , Factor de Crecimiento Transformador beta1/metabolismo , Masculino , Humanos , Línea Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Eliminación de GenRESUMEN
Macrophage-derived foam cells play a crucial role in plaque formation and rupture during the progression of atherosclerosis. Traditional studies have often overlooked the heterogeneity of foam cells, focusing instead on populations of cells. To address this, we have developed time-resolved, single-cell metabolomics and lipidomics approaches to explore the heterogeneity of macrophages during foam cell formation. Our dynamic metabolomic and lipidomic analyses revealed a dual regulatory axis involving inflammation and ferroptosis. Further, single-cell metabolomics and lipidomics have delineated a continuum of macrophage states, with varied susceptibilities to apoptosis and ferroptosis. Single-cell transcriptomic profiling confirmed these divergent fates, both in established cell lines and in macrophages derived from peripheral blood monocytes. This research has uncovered the complex molecular interactions that dictate these divergent cell fates, providing crucial insights into the pathogenesis of atherosclerosis.
Asunto(s)
Apoptosis , Ferroptosis , Células Espumosas , Lipidómica , Metabolómica , Análisis de la Célula Individual , Células Espumosas/metabolismo , Lipidómica/métodos , Metabolómica/métodos , Humanos , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/citologíaRESUMEN
It is well-known that the bacterial microenvironment imposes restrictions on the growth and behavior of bacteria. The localized monitoring of microenvironmental factors is appreciated when consulting bacterial adaptation and behavior in the presence of chemical or mechanical stimuli. Herein, we developed a novel liquid crystal (LC) biosensor in a microsphere configuration for real-time 3D monitoring of the bacteria microenvironment, which was implemented by a microfluidic chip. As a proof of concept, a LC gel (LC-Gel) microsphere biosensor was prepared and employed in the localized pH changes of bacteria by observing the configuration change of LC under polarized optical microscopy. Briefly, the microsphere biosensor was constructed in core-shell configuration, wherein the core contained LCE7 (a nematic LC) doped with 4-pentylbiphenyl-4'-carboxylic acid (PBA), and the shell encapsulated the bacteria. The protonation of carboxyl functional groups of the PBA induced a change in charge density on the surface of LCE7 and the orientation of E7 molecules, resulting in the transitions of the LC nucleus from axial to bipolar. The developed LC-Gel microspheres pH sensor exhibited its dominant performance on localized pH real-time sensing with a resolution of 0.1. An intriguing observation from the prepared pH biosensor was that the diverse bacteria impelled distinct acidifying or alkalizing effects. Overall, the facile LC-Gel microsphere biosensor not only provides a versatile tool for label-free, localized pH monitoring but also opens avenues for investigating the effects of chemical and mechanical stimuli on cellular metabolism within bacterial microenvironments.
Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Microesferas , Concentración de Iones de Hidrógeno , Cristales Líquidos/química , Escherichia coliRESUMEN
Long nanowires offer an increased surface area for biomolecule immobilization, facilitating enhanced binding capacity and sensitivity in the detection of target analytes. However, robust long-nanowire fabrication remains a significant challenge. In this paper, we developed a novel construction of a micro chemical pen (MCP), called a clean-assisted micro chemical pen (CAMCP), for robust long-nanowire fabrication. CAMCP, based on localized hydrodynamic flow confinement, was conducted by incorporating a clean phase to effectively dissolve aggregated silver particles in the aspiration channel's shell, thereby enhancing the MCP's longevity by 60.84%, allowing for an 840 µm extension in nanowire patterning capability. A 4600-aspect ratio (length:1200 µm, width: 260 nm) nanowire was fabricated by CAMCP and utilized as a nanowire sensor, showing a 39.7% increase in IgA detection sensitivity compared to a 3000-aspect ratio sensor. Furthermore, the longer nanowire sensor exhibited enhanced signal responses, a higher signal-to-noise ratio, and a lower limit of detection (LOD). The preponderant bioassay performances of the longer nanowire sensor in bioassays, facilitated by CAMCP, open up its possibilities for chemical-synthesis nanowires (NWs) in ultrasensitive biodetection.
Asunto(s)
Nanocables , Nanocables/química , Bioensayo , Límite de Detección , Plata/química , Técnicas BiosensiblesRESUMEN
With the advantages of high-throughput manufacturing and customizability, on-microsphere construction of in vitro multicellular analytical systems has garnered significant attention. However, achieving a precise, biocompatible cell arrangement and spatial signal analysis in hydrogel microspheres remains challenging. In this work, a microfluidic method is reported for the biocompatible generation of addressable supersegmented multicompartmental microspheres. Additionally, these microspheres are developed as novel label-free multicellular systems. In the microfluidic approach, controllable microfluidics is used to finely tune the internal microstructure of the microspheres, and the gas ejector ensures the biocompatibility of the preparation process. As a proof of concept, six- and twenty-compartment microspheres were obtained without the addition of any biohazardous reagents. For microsphere decoding, the visualization of two basic compartments can provide clues for identifying label-free cells due to the structural regularity of the microspheres. Finally, by encapsulating cells of different types, these microspheres as multicellular systems were successfully used for cell coculture and drug testing. These biocompatible, scalable, and analyzable microspheres will open up new prospects for biomedical analysis.
RESUMEN
Glycosylation, a fundamental biological process, involves the attachment of glycans to proteins, lipids, and RNA, and it plays a crucial role in various biological pathways. It is of great significance to obtain the precise spatial distribution of glycosylation modifications at the cellular and tissue levels. Here, we introduce LectoScape, an innovative method enabling detailed imaging of tissue glycomes with up to 1 µm resolution through image mass cytometry (IMC). This method utilizes 12 distinct, nonoverlapping lectins selected via microarray technology, enabling the multiplexed detection of a wide array of glycans. Furthermore, we developed an efficient labeling strategy for these lectins. Crucially, our approach facilitates the concurrent imaging of diverse glycan motifs, including N-glycan and O-glycan, surpassing the capabilities of existing technologies. Using LectoScape, we have successfully delineated unique glycan structures in various cell types, enhancing our understanding of the glycan distribution across human tissues. Our method has identified specific glycan markers, such as α2,3-sialylated Galß1, 3GalNAc in O-glycan, and terminal GalNAc, as diagnostic indicators for cervical intraepithelial neoplasia. This highlights the potential of LectoScape in cancer diagnostics through the detection of abnormal glycosylation patterns.
Asunto(s)
Glicómica , Lectinas , Polisacáridos , Humanos , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Glicómica/métodos , Lectinas/química , Lectinas/metabolismo , Lectinas/análisis , GlicosilaciónRESUMEN
In this work, a class of bubble-containing multicompartmental particles with self-orienting capability is developed, where a single bubble is enclosed at the top of the super-segmented architecture. Such bubbles, driven by potential energy minimization, cause the particles to have a bubble-upward preferred orientation in liquid, enabling efficient decoding of their high-density signals in an interference-resistant manner. The particle preparation involves bubble encapsulation via the impact of a multicompartmental droplet on the liquid surface and overall stabilization via rational crosslinking. The conditions for obtaining these particles are systematically investigated. Methodological compatibility with materials is demonstrated by different hydrogel particles. Finally, by encapsulating cargoes of interest, these particles have found broad applications in actuators, multiplexed detection, barcodes, and multicellular systems.
RESUMEN
BACKGROUND: Microbial infection and colonization are frequently associated with disease progression and poor clinical outcomes in bronchiectasis. Identification of pathogen spectrum is crucial for precision treatment at exacerbation of bronchiectasis. METHODS: We conducted a prospective cohort study in patients with bronchiectasis exacerbation onset and stable state. Bronchoalveolar lavage fluid (BALF) was collected for conventional microbiological tests (CMTs) and metagenomic Next-Generation Sequencing (mNGS). Bronchiectasis patients were monitored for documenting the time to the next exacerbation during longitudinal follow-up. RESULTS: We recruited 168 eligible participants in the exacerbation cohorts, and 38 bronchiectasis patients at stable state at longitudinal follow-up. 141 bronchiectasis patients at exacerbation onset had definite or probable pathogens via combining CMTs with mNGS reports. We identified that Pseudomonas aeruginosa, non-tuberculous mycobacteria, Haemophilus influenzae, Nocardia spp, and Staphylococcus aureus were the top 5 pathogens with a higher detection rate in our cohorts via combination of CMTs and mNGS analysis. We also observed strong correlations of Pseudomonas aeruginosa, Haemophilus influenzae, non-tuberculous mycobacteria with disease severity, including the disease duration, Bronchiectasis Severity Index, and lung function. Moreover, the adjusted pathogenic index of potential pathogenic microorganism negatively correlated (r = -0.7280, p < 0.001) with the time to the next exacerbation in bronchiectasis. CONCLUSION: We have revealed the pathogenic microbial spectrum in lower airways and the negative correlation of PPM colonization with the time to the next exacerbation in bronchiectasis. These results suggested that pathogens contribute to the progression of bronchiectasis.
Asunto(s)
Bronquiectasia , Humanos , Bronquiectasia/microbiología , Bronquiectasia/diagnóstico , Femenino , Masculino , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Líquido del Lavado Bronquioalveolar/microbiología , Estudios de Cohortes , Estudios de Seguimiento , Adulto , Progresión de la Enfermedad , Estudios LongitudinalesRESUMEN
Motivated by the recently reported signatures of superconductivity in trilayer La_{4}Ni_{3}O_{10} under pressure, we comprehensively study this system using ab initio and random-phase approximation techniques. Without electronic interactions, the Ni d_{3z^{2}-r^{2}} orbitals show a bonding-antibonding and nonbonding splitting behavior via the O p_{z} orbitals inducing a "trimer" lattice in La_{4}Ni_{3}O_{10}, analogous to the dimers of La_{3}Ni_{2}O_{7}. The Fermi surface consists of three electron sheets with mixed e_{g} orbitals, and a hole and an electron pocket made up of the d_{3z^{2}-r^{2}} orbital, suggesting a Ni two-orbital minimum model. In addition, we find that superconducting pairing is induced in the s^{±}-wave channel due to partial nesting between the M=(π,π) centered pockets and portions of the Fermi surface centered at the Γ=(0,0) point. With changing electronic density n, the s^{±} instability remains leading and its pairing strength shows a domelike behavior with a maximum around n=4.2 (â¼6.7% electron doping). The superconducting instability disappears at the same electronic density as that in the new 1313 stacking La_{3}Ni_{2}O_{7}, correlated with the vanishing of the hole pocket that arises from the trilayer sublattice, suggesting that the high-T_{c} superconductivity of La_{3}Ni_{2}O_{7} does not originate from a trilayer and monolayer structure. Furthermore, we confirm the experimentally proposed spin state in La_{4}Ni_{3}O_{10} with an in-plane (π, π) order and antiferromagnetic coupling between the top and bottom Ni layers, and spin zero in the middle layer.
RESUMEN
BACKGROUND: The prediction capacity of the Clinical COPD Questionnaire (CCQ) and its functional, symptom, and mental subdomain for COPD hospitalized exacerbation were rarely studied. OBJECTIVE: To examine the prognostic capacity of the total CCQ and its three subdomains for 3-year COPD hospitalized exacerbations. METHODS: We analyzed the predictive ability of total CCQ score and its subdomains for hospitalized exacerbations in an observational cohort of 987 subjects with stable COPD from the RealDTC, an ongoing multicenter prospective study. Hospitalized exacerbations were prospectively collected every 6 month for a maximum of 3 years. RESULTS: The total CCQ and its functional and symptom domain, but not the mental domain, were significantly associated with 3-year hospitalized exacerbations by multivariate Cox regression analysis. The predictive capacity of functional domain was similar to that of the total CCQ, but significantly stronger than the symptom and mental domain by ROC analysis (P < 0.05). ROC curves also showed that the AUC of exacerbation history combined with CCQ functional domain was larger than that of exacerbation history alone (P < 0.0001). Additionally, the predictive value of multivariable models that contains CCQ functional domain was significantly better than the corresponding model without CCQ functional domain (P < 0.05). CONCLUSIONS: The total CCQ and its functional and symptom domain were independent risk factors of 3-year hospitalized exacerbations. The prognostic capacity of the functional domain was similar to that of total CCQ, and was significantly stronger than the symptom and mental domain. The CCQ functional domain was able to increase the predictive power of exacerbation history and other multivariable prediction models, indicating it may have an important role in the multivariable prediction tool for hospitalized exacerbation, and its combination with other clinical variables might be used as a low-cost approach for assessments of the disease severity and severe exacerbation in COPD patients in the future.