Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 59, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619730

RESUMEN

As one of the important biodiversity conservation areas in China, the ecosystem in the lower reaches of the Yarlung Zangbo River is fragile, and is particularly sensitive to global changes. To reveal the diversity pattern of phytoplankton, the metabarcode sequencing was employed in the Medog section of the lower reaches of the Yarlung Zangbo River during autumn 2019 in present study. The phytoplankton assemblies can be significantly divided into the main stem and the tributaries; there are significant differences in the phytoplankton biomass, alpha and beta diversity between the main stem and the tributaries. While both the main stem and the tributaries are affected by dispersal limitation, the phytoplankton assemblages in the entire lower reaches are primarily influenced by heterogeneous selection. Community dissimilarity and assembly process were significantly correlated with turbidity, electrical conductivity, and nitrogen nutrition. The tributaries were the main source of the increase in phytoplankton diversity in the lower reaches of the Yarlung Zangbo River. Such diversity pattern of phytoplankton in the lower reach may be caused by the special habitat in Medog, that is, the excessive flow velocity, and the significant spatial heterogeneity in physical and chemical factors between stem and tributaries. Based on the results and conclusions obtained in present study, continuous long-term monitoring is essential to assess and quantify the impact of global changes on phytoplankton.


Asunto(s)
Ecosistema , Ríos , Biodiversidad , Biomasa , Fitoplancton
2.
BMC Pulm Med ; 24(1): 57, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280994

RESUMEN

BACKGROUND: Currently, there remains insufficient focus on non-severe community-acquired pneumonia (CAP) patients who are at risk of clinical deterioration, and there is also a dearth of research on the related risk factors. Early recognition of hospitalized patients at risk of clinical deterioration will be beneficial for their clinical management. METHOD: A retrospective study was conducted in The First Affiliated Hospital of Wenzhou Medical University, China, spanning from January 1, 2018 to April 30, 2022, and involving a total of 1,632 non-severe CAP patients. Based on whether their condition worsened within 72 h of admission, patients were divided into a clinical deterioration group and a non-clinical deterioration group. Additionally, all patients were randomly assigned to a training set containing 75% of patients and a validation set containing 25% of patients. In the training set, risk factors for clinical deterioration in patients with non-severe CAP were identified by using LASSO regression analysis and multivariate logistic regression analysis. A nomogram was developed based on identified risk factors. The effectiveness of the nomogram in both the training and validation sets was assessed using Receiver Operating Characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS: Age, body mass index (BMI), body temperature, cardiovascular comorbidity, respiratory rate, LDH level, lymphocyte count and D-dimer level were identified as risk factors associated with the clinical deterioration of non-severe CAP within 72 h of admission. The area under curve (AUC) value of the nomogram was 0.78 (95% CI: 0.74-0.82) in the training set and 0.75 (95% CI: 0.67-0.83) in the validation set. Furthermore, the calibration curves for both the training and validation sets indicated that the predicted probability of clinical deterioration aligned with the actual probability. Additionally, DCA revealed clinical utility for the nomogram at a specific threshold probability. CONCLUSION: The study successfully identified the risk factors linked to the clinical deterioration of non-severe CAP and constructed a nomogram for predicting the probability of deterioration. The nomogram demonstrated favorable predictive performance and has the potential to aid in the early identification and management of non-severe CAP patients at elevated risk of deterioration.


Asunto(s)
Deterioro Clínico , Infecciones Comunitarias Adquiridas , Neumonía , Humanos , Nomogramas , Estudios Retrospectivos , Neumonía/diagnóstico , Neumonía/epidemiología , Factores de Riesgo , Infecciones Comunitarias Adquiridas/diagnóstico
3.
BMC Musculoskelet Disord ; 25(1): 176, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413868

RESUMEN

OBJECTIVE: To develop and evaluate a deep learning model based on chest CT that achieves favorable performance on opportunistic osteoporosis screening using the lumbar 1 + lumbar 2 vertebral bodies fusion feature images, and explore the feasibility and effectiveness of the model based on the lumbar 1 vertebral body alone. MATERIALS AND METHODS: The chest CT images of 1048 health check subjects from January 2021 to June were retrospectively collected as the internal dataset (the segmentation model: 548 for training, 100 for tuning and 400 for test. The classification model: 530 for training, 100 for validation and 418 for test set). The subjects were divided into three categories according to the quantitative CT measurements, namely, normal, osteopenia and osteoporosis. First, a deep learning-based segmentation model was constructed, and the dice similarity coefficient(DSC) was used to compare the consistency between the model and manual labelling. Then, two classification models were established, namely, (i) model 1 (fusion feature construction of lumbar vertebral bodies 1 and 2) and (ii) model 2 (feature construction of lumbar 1 alone). Receiver operating characteristic curves were used to evaluate the diagnostic efficacy of the models, and the Delong test was used to compare the areas under the curve. RESULTS: When the number of images in the training set was 300, the DSC value was 0.951 ± 0.030 in the test set. The results showed that the model 1 diagnosing normal, osteopenia and osteoporosis achieved an AUC of 0.990, 0.952 and 0.980; the model 2 diagnosing normal, osteopenia and osteoporosis achieved an AUC of 0.983, 0.940 and 0.978. The Delong test showed that there was no significant difference in area under the curve (AUC) values between the osteopenia group and osteoporosis group (P = 0.210, 0.546), while the AUC value of normal model 2 was higher than that of model 1 (0.990 vs. 0.983, P = 0.033). CONCLUSION: This study proposed a chest CT deep learning model that achieves favorable performance on opportunistic osteoporosis screening using the lumbar 1 + lumbar 2 vertebral bodies fusion feature images. We further constructed the comparable model based on the lumbar 1 vertebra alone which can shorten the scan length, reduce the radiation dose received by patients, and reduce the training cost of technologists.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Humanos , Densidad Ósea , Estudios Retrospectivos , Absorciometría de Fotón/métodos , Osteoporosis/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
4.
Luminescence ; 39(1): e4671, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286599

RESUMEN

Copper is a critical element in both human and animal metabolic processes. Its role includes supporting connective tissue cross-linking, as well as iron and lipid metabolism; at the same time, copper is also a toxic heavy metal that can cause harm to both the environment and human health. Glutathione (GSH) is a tripeptide composed of glutamic acid, cysteine, and glycine combined with sulfhydryl groups. Its properties include acting as an antioxidant and facilitating integrative detoxification. GSH is present in both plant and animal cells and has a fundamental role in maintaining living organisms. GSH is the most abundant thiol antioxidant in the human body. It exists in reduced and oxidized forms within cells and provides significant biochemical functions, such as regulating vitamins such as vitamins D, E, and C, and facilitating detoxification. A fluorescent probe has been developed to detect copper ions selectively, sensitively, and rapidly. This report outlines the successful work on creating a peptide probe, TGN (TPE-Trp-Pro-Gly-Cln-His-NH2 ), with specific Cu2+ detection capabilities, and a significant fluorescence recovery occurred with the addition of GSH. This indicates that the probe can detect Cu2+ and GSH concurrently. The detection limit for Cu2+ in the buffer solution was 264 nM (R2 = 0.9992), and the detection limit for GSH using the TGN-Cu2+ complex was 919 nM (R2 = 0.9917). The probe exhibits high cell permeability and low biotoxicity that make it ideal for live cell imaging in biological conditions. This peptide probe has the capability to detect Cu2+ and GSH in biological cells.


Asunto(s)
Antioxidantes , Cobre , Animales , Humanos , Cobre/química , Ligandos , Glutatión , Péptidos/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Vitaminas
5.
J Asian Nat Prod Res ; 26(8): 993-1000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38629616

RESUMEN

A new 14-membered resorcylic acid lactone (RAL14), chaetolactone A (1), along with three known ones (2-4), was obtained from the fermentation of the soil-derived fungus Chaetosphaeronema sp. SSJZ001. Their structures were established based on extensive spectroscopic data analyses (UV, IR, HRESIMS, 1D, and 2D NMR),13C NMR chemical shifts calculations coupled with the DP4+ probability method, theoretical calculations of ECD spectra, as well as X-ray diffraction analysis. All compounds were evaluated for their cytotoxic effects against A549, HO-8910, and MCF-7 cell lines.


Asunto(s)
Ascomicetos , Lactonas , Lactonas/química , Lactonas/farmacología , Lactonas/aislamiento & purificación , Ascomicetos/química , Estructura Molecular , Humanos , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Células MCF-7 , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular
6.
Anal Bioanal Chem ; 415(6): 1205-1219, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36625896

RESUMEN

Nanozymes have been emerging as substitutes for natural enzymes to construct biosensors towards biomolecular detection. However, the detection of glutathione (GSH) by nanozyme-based biosensors still remains a great challenge for research on catalytic activity enhancement and the detection mechanism. In this work, Sb-doped iron oxychloride (Sb-FeOCl) with a well-defined nanorod-like structure is prepared by high-temperature calcination. Sb-FeOCl nanorods have high peroxidase-like activity, which can catalyze the decomposition of H2O2 into ·OH and then oxidize 3,3',5,5'-tetramethylbenzidine (TMB). In view of these intriguing observations, a reliable colorimetric method with a simple mixing and detection strategy is developed for the detection of GSH. The linear range of GSH detection is 1-36 µM. The detection limit of GSH reaches a low level of 0.495 µM (3σ/slope). The GSH sensing system also exhibits excellent specificity and anti-interference. Taking advantage of the advantages of the Sb-FeOCl nanorod-based biosensor, it can be used to quantitatively detect GSH levels in human serum. It can be anticipated that the Sb-FeOCl nanorods have broad prospects in the field of enzymatic biochemical reactions.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Glutatión , Humanos , Técnicas Biosensibles/métodos , Colorimetría/métodos , Glutatión/análisis , Glutatión/química , Peróxido de Hidrógeno/química , Peroxidasa , Peroxidasas/química , Nanopartículas
7.
J Asian Nat Prod Res ; 25(9): 860-866, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36523264

RESUMEN

Two unusual novel iridoid glycosides, cornsecoside A (1) and cornsecoside B (2), were isolated from a 40% ethanol elution fraction of a 50% ethanol extract of Cornus officinalis fruit. Their structures were determined by spectroscopic data analysis combined with hydrolysis and ECD spectroscopy. In addition, compounds 1 and 2 exhibited cytotoxic activity against Bel-7402 cells with IC50 values of 8.12 and 9.31 µM, and were neuroprotective against H2O2-induced SH-SY5Y cell injure at a concentration of 10 µM.


Asunto(s)
Cornus , Neuroblastoma , Humanos , Glicósidos Iridoides/farmacología , Glicósidos Iridoides/química , Cornus/química , Frutas/química , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/análisis , Etanol/análisis , Glicósidos/farmacología , Glicósidos/química
8.
J Environ Sci (China) ; 125: 593-602, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375941

RESUMEN

The combined pollution of heavy metals is ubiquitous worldwide. Mn/Al-layered double oxide-loaded crab shells biochar (LDO/BC) was prepared, so as to remediate the combined pollution of Cd and Cu in soil and water. The pristine and used LDO/BC were characterized and the results revealed that the layered double oxide was successfully loaded on crab shells biochar (BC) and metal element Ca in crab shells was beneficial to the formation of more regular layered and flake structure. The maximal adsorption capacity (Qm) of LDO/BC for aqueous Cu2+ and Cd2+ was 66.23 and 73.47 mg/g, respectively. LDO/BC and BC were used to remediate e-waste-contaminated soil for the first time and exhibited highly efficient performance. The extraction amount of Cu and Cd in the contaminated soil by diethylene triamine penta-acetic acid (DTPA) after treating with 5% LDO/BC was significantly reduced from 819.84 to 205.95 mg/kg (with passivation rate 74.8%) and 8.46 to 4.16 mg/kg (with passivation rate 50.8%), respectively, inferring that the bioavailability of heavy metals declined remarkably. The experimental result also suggested that after remediation by LDO/BC the exchangeable and weak acid soluble Cu and Cd in soil translated to reducible, residual and oxidizable fraction which are more stable state. Precipitation, complexation and ion exchange were proposed as the possible mechanisms for Cd and Cu removal. In general, these experiment results indicate that LDO/BC can be a potentially effective reagent for remediation of heavy metal contaminated water and soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Cadmio , Contaminantes del Suelo/análisis , Agua , Óxidos , Carbón Orgánico/química , Metales Pesados/análisis
9.
Langmuir ; 38(50): 15559-15569, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36503243

RESUMEN

Emerging metal-organic framework (MOF)-based mimic enzymes have been exploited to design a colorimetric sensor for the detection of biomolecules. However, it is challenging to figure out the glutathione (GSH) detection method and the corresponding sensing mechanism using an MOF-based colorimetric sensor. In this work, a novel iron-copper MOF with high activity is synthesized by a wet-chemical method. A GSH colorimetric sensor based on the peroxidase-like properties of the iron-copper MOF is developed. Hydrogen peroxide is converted to hydroxyl radicals by the peroxidase-like properties of the iron-copper MOF mimic enzyme, which can catalyze the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (ox-TMB). The kinetic constant of the MOF mimic enzyme (0.02 mM for H2O2) is superior to horseradish peroxidase (HRP). The GSH content can be quantified by proposing a sensor based on the colorimetric method and color turn-off mechanism. The turn-off mechanism of GSH analysis includes two aspects. On the one hand, the blue ox-TMB can be deoxidized to colorless TMB by GSH. On the other hand, hydroxyl radicals (•OH) can be consumed by GSH. The linear range and limit of detection are 2-20 and 0.439 µM, respectively. At the same time, GSH detection also shows good specificity and anti-interference characteristics. Therefore, MOF-based colorimetric sensors have been used to qualitatively and quantitatively measure GSH contents in human serum. The mechanism and application of the iron-copper MOF pave a way for the development of mimic enzymes with polymetallic active sites in the field of colorimetric sensing.


Asunto(s)
Cobre , Estructuras Metalorgánicas , Humanos , Cobre/química , Estructuras Metalorgánicas/química , Colorimetría/métodos , Hierro/química , Peróxido de Hidrógeno/química , Peroxidasas , Colorantes , Glutatión
10.
Langmuir ; 38(27): 8266-8279, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35749646

RESUMEN

Peroxidase-like nanozymes with robust catalytic capacity and detection specificity have been proposed as substitutes to natural peroxidases in biochemical sensing. However, the catalytic activity enhancement, detection mechanism, and application of nanozyme-based biosensors toward l-cysteine (l-Cys) detection still remain significant challenges. In this work, a doped ferrite nanozyme with well-defined structure and surface charges is fabricated by a two-step method of continuous flow coprecipitation and high-temperature annealing. The resulted ferrite nanozyme possesses an average size of 54.5 nm and a zeta-potential of 6.45 mV. A high-performance biosensor is manufactured based on the peroxidase-like catalytic feature of the doped ferrite. The ferrite nanozyme can oxidize the 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of H2O2 because of the instinctive capacity to decompose H2O2 into ·OH. The Michaelis-Menten constants (0.0911 mM for TMB, 0.140 mM for H2O2) of the ferrite nanozyme are significantly smaller than those of horseradish peroxidase. A reliable colorimetric method is established to selectively analyze l-Cys via a facile mixing-and-detecting methodology. The detection limit and linear range are 0.119 µM and 0.2-20 µM, respectively. Taking the merits of the ferrite nanozyme-based biosensors, the l-Cys level in the human serum can be qualitatively detected. It can be anticipated that the surface-charged ferrite nanozyme shows great application prospects in the fields of bioanalytical chemistry and point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Colorimetría/métodos , Cisteína , Compuestos Férricos , Humanos , Peróxido de Hidrógeno/química , Peroxidasa/química , Peroxidasas
11.
BMC Infect Dis ; 22(1): 416, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488253

RESUMEN

BACKGROUND: To evaluate the diagnostic value of metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF) in immunocompromised patients for the diagnosis of suspected pneumonia in comparison with that of conventional microbiological tests (CMTs). METHODS: Sixty-nine immunocompromised patients with suspected pneumonia received both CMTs and mNGS of BALF were analyzed retrospectively. The diagnostic value was compared between CMTs and mNGS, using the clinical composite diagnosis as the reference standard. RESULTS: Sixty patients were diagnosed of pneumonia including fifty-two patients with identified pathogens and eight patients with probable pathogens. Taking the composite reference standard as a gold standard, 42 pathogens were identified by CMTs including nine bacteria, 17 fungi, 8 virus, 6 Mycobacterium Tuberculosis, and two Legionella and 19(45%) of which were detected by BALF culture. As for mNGS, it identified 76 pathogens including 20 bacteria, 31 fungi, 14 virus, 5 Mycobacterium Tuberculosis, four Legionella and two Chlamydia psittaci. The overall detection rate of mNGS for pathogens were higher than that of CMTs. However, a comparable diagnostic accuracy of mNGS and CMTs were found for bacterial and viral infections. mNGS exhibited a higher diagnostic accuracy for fungal detection than CMTs (78% vs. 57%, P < 0.05), which mainly because of the high sensitivity of mNGS in patients with Pneumocystis jirovecii pneumonia (PJP) (100% vs. 28%, P < 0.05). Nineteen patients were identified as pulmonary co-infection, mNGS test showed a higher detection rate and broader spectrum for pathogen detection than that of CMTs in co-infection. Moreover, Pneumocystis jirovecii was the most common pathogen in co-infection and mNGS have identified much more co-pathogens of PJP than CMTs. CONCLUSIONS: mNGS of BALF improved the microbial detection rate of pathogens and exhibited remarkable advantages in detecting PJP and identifying co-infection in immunocompromised patients.


Asunto(s)
Coinfección , Mycobacterium tuberculosis , Neumonía por Pneumocystis , Virus , Líquido del Lavado Bronquioalveolar/microbiología , Virus ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Huésped Inmunocomprometido , Mycobacterium tuberculosis/genética , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/microbiología , Estudios Retrospectivos , Sensibilidad y Especificidad
12.
Anal Bioanal Chem ; 414(5): 1759-1772, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35059790

RESUMEN

The existence of pesticide residues in the hydrosphere, biosphere, and anthroposphere can cause acute or chronic diseases and deteriorate the environment. Therefore, efficient detection of pesticide residues is of great significance to prevent food poisoning, control food pollution, and protect human lives by recognizing their distribution and concentration. Herein, a novel smartphone-coupled three-layered paper-based microfluidic chip is proposed as a facile platform to detect the pesticides. The stereoscopic capillary-driven fluid transport is enabled by the three-layered microfluidic chip configuration. The detection mechanism is based on the enzyme inhibition reaction and the chromatic reaction. The detection results are obtained by a smartphone and figured out by colorimetric quantitative analysis. Taking advantages of the above merits, we demonstrate the utilization of this smartphone-coupled three-layered paper-based microfluidic chip for the effective analysis of typical pesticides (profenofo and methomyl). The linear ranges of profenofo and methomyl are 0.27-2.1 µmol L-1 and 0.14-1.85 µmol L-1, respectively. The corresponding limits of detection in the chips are 55 nM and 34 nM, respectively. The paper-based chips are also highly cost-effective with a total cost of 0.082 ¥ per piece. It can be anticipated that this technique will open new avenues for the mass fabrication of paper-based microfluidic chips and provide state-of-the-art methods in the field of analytical chemistry.


Asunto(s)
Colorimetría/métodos , Dispositivos Laboratorio en un Chip , Papel , Plaguicidas/análisis , Teléfono Inteligente
13.
BMC Pulm Med ; 22(1): 112, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351079

RESUMEN

PURPOSE: This study aims to evaluate the diagnostic application and performance of the metagenomic next-generation sequencing (mNGS) in patients suspected of local pulmonary infection by comparing it to the traditional pathogen detection methods in lung tissue specimens obtained by a computerized tomography-guided biopsy (CT-guided biopsy). METHODS: We retrospectively reviewed patients, admitted to the First Affiliated Hospital of Wenzhou Medical University, China from May 2018 to December 2020, who were suspected of local pulmonary infection. All cases received a CT-guided lung biopsy, tissue samples were sent both for conventional examinations (CE) and mNGS tests. The sensitivity and specificity of the two diagnostic approaches were compared. RESULTS: 106 patients enrolled, 76 patients were diagnosed with a pulmonary infection. Among 49 patients with identified pathogens, CE confirmed pathogenic infections in 32 cases. Mycobacterium spp. and fungi accounted for 37.5% (12/32) and 28.1% (9/32), respectively, with bacteria 34.4% (11/32). The mNGS examination detected extra pathogenic microorganisms in 22 patients that were consistent with the patients' clinical and radiographic pictures. The sensitivity of mNGS was 53.9% vs. 42.1% for the CE, while the specificity was 56.7% versus 96.7%. For detection rate, mNGS was significantly superior to CE in bacterial (96.3% vs. 40.7%, p < 0.05), and mixed infections (100% vs. 50%, p < 0.05), but inferior to CE in fungal (60% vs. 90%, p > 0.05) and Mycobacterium spp. infections (66.7% vs. 100%, p > 0.05) with no significant difference. Among 31 cases diagnosed with lung abscess, the diagnostic performance of the detection rate was 67.7% (21/31) in favour of mNGS compared to 29.0% (9/31) for CE (p < 0.05). Most polymicrobial infections were induced by anaerobic species that coexisted with Streptococcus constellatus. And Klebsiella pneumoniae was the most common isolated monomicrobial infection. CONCLUSIONS: The most commonly detected causative pathogens for local pulmonary infections were bacteria, Mycobacterium spp. and fungi. Compared with the CE, the advantages of mNGS in the pathogens detection lie in the discovery of bacterial and mixed infections, as well as in the detection of lung abscess. Conversely, mNGS is not good enough to be recommendable for the detection of Mycobacterium spp. and fungi.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Biopsia , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pulmón/diagnóstico por imagen , Metagenómica/métodos , Estudios Retrospectivos
14.
Proc Natl Acad Sci U S A ; 116(37): 18322-18327, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31444300

RESUMEN

Photonic materials with positionally ordered structure can interact strongly with light to produce brilliant structural colors. Here, we found that the nonperiodic nematic liquid crystals of nanoplates can also display structural color with only significant orientational order. Owing to the loose stacking of the nematic nanodiscs, such colloidal dispersion is able to reflect a broad-spectrum wavelength, of which the reflection color can be further enhanced by adding carbon nanoparticles to reduce background scattering. Upon the addition of electrolytes, such vivid colors of nematic dispersion can be fine-tuned via electrostatic forces. Furthermore, we took advantage of the fluidity of the nematic structure to create a variety of colorful arts. It was expected that the concept of implanting nematic features in photonic structure of lyotropic nanoparticles may open opportunities for developing advanced photonic materials for display, sensing, and art applications.

15.
Chem Biodivers ; 19(7): e202200403, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35596060

RESUMEN

Two new nor-seco isodhilarane meroterpenoids (NSIMs), purpurogenolides F (1) and G (2), along with three known meroterpenoid analogs (3-5), were isolated from the cultures of an endophytic fungus, Penicillium purpurogenum. Structures and absolute configurations of the new NSIMs were determined based on extensive spectroscopic data analyses, including HR-ESI-MS, UV, IR, NMR chemical shift calculations together with DP4+ probability analysis, as well as ECD calculations. All the isolated meroterpenoids were assessed for their anti-inflammatory activities, and compound 4 exhibited moderate inhibitory activity against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells with an IC50 value of 20.85±2.31 µM.


Asunto(s)
Penicillium , Talaromyces , Animales , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Penicillium/química , Células RAW 264.7
16.
J Nat Prod ; 84(6): 1780-1786, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34014675

RESUMEN

A sesquiterpene synthase gene was identified from the transcriptome of Euphorbia fischeriana Steud, and the function of its product EfTPS12 was characterized by in vitro biochemical experiments and synthetic biology approaches. EfTPS12 catalyzed conversion of farnesyl diphosphate into three products, including cedrol (1) and eupho-acorenols A (2) and B (3) (two diastereoisomers of tricho-acorenol), thereby being named EfCAS herein. The structures of 2 and 3 were determined by spectroscopic methods and comparison of experimental and calculated electronic circular dichroism spectra. EfCAS is the first example of a plant-derived sesquiterpene synthase that is capable of synthesizing acorane-type alcohols. This study also documents that synthetic biology approaches enable large-scale preparation of volatile terpenes and thereby substantially facilitate characterization of corresponding terpene synthases and elucidation of the structures of their products.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Euphorbia/enzimología , Sesquiterpenos Policíclicos/metabolismo , China , Estructura Molecular , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo , Biología Sintética , Transcriptoma
17.
J Asian Nat Prod Res ; 23(3): 235-249, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33263258

RESUMEN

Searching for PD-1/PD-L1 inhibitor from medicinal plants has become a potential method to discover small molecular cancer immunotherapy drugs. Using PD-1/PD-L1 inhibitory activity assay in vitro, a bioactive fraction was obtained from the ethanol extract of Gymnadenia conopsea. A sensitive UPLC-HRMS/MS method was established for the rapid screening and identification of compositions from bioactive fraction. Based on the characteristic fragmentation patterns of standards analysis and extracted ion chromatogram (EIC) method, 46 compounds were rapidly screened and identified (including 35 succinic acid ester glycosides and 11 other compounds), among which 17 compounds were tentatively identified as new compounds.


Asunto(s)
Etanol , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Cromatografía Líquida de Alta Presión , Estructura Molecular
18.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4069-4082, 2021 Aug.
Artículo en Zh | MEDLINE | ID: mdl-34467716

RESUMEN

Trigonella foenum-graecum is an annual plant of the genus Trigonella in the Leguminosae family. It is widely distributed in China and has a long history of application. According to phytochemistry research, the seeds, stem, and leaves of this herb contain not only a variety of bioactive ingredients, including alkaloids, saponins, polysaccharides, flavonoids, and phenols, but also abundant nutrients such as unsaturated fatty acids and amino acids and various trace elements. Pharmacological studies have shown that both the extract of T. foenum-graecum and its chemical constituents exhibit hypoglycemic, hypolipidemic, antitumor, antioxidative, antimicro-bial, and hepatoprotective activities. This paper reviews the research progress on the chemical constituents and pharmacological effects of T. foenum-graecum, which may contribute to further development, application, and clinical research of this herb.


Asunto(s)
Trigonella , Antioxidantes/farmacología , Hipoglucemiantes , Extractos Vegetales/farmacología , Semillas
19.
Zhongguo Zhong Yao Za Zhi ; 46(3): 638-644, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645031

RESUMEN

According to human carboxylesterase 2(hCE2) inhibitors reported in the literature, the pharmacophore model of hCE2 inhibitors was developed using HipHop module in Discovery Studio 2016. The optimized pharmacophore model, which was validated by test set, contained two hydrophobic, one hydrogen bond acceptor, and one aromatic ring features. Using the pharmacophore model established, 5 potential hCE2 inhibitors(CS-1,CS-2,CS-3,CS-6 and CS-8) were screened from 20 compounds isolated from the roots of Paeonia lactiflora, which were further confirmed in vitro, with the IC_(50) values of 5.04, 5.21, 5.95, 6.64 and 7.94 µmol·L~(-1), respectively. The results demonstrated that the pharmacophore model exerted excellent forecasting ability with high precision, which could be applied to screen novel hCE2 inhibitors from Chinese medicinal materials.


Asunto(s)
Carboxilesterasa , Carboxilesterasa/antagonistas & inhibidores , Carboxilesterasa/metabolismo , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
20.
Metab Eng ; 59: 44-52, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32004707

RESUMEN

Silymarin extracted from milk thistle seeds, is used for treating hepatic diseases. Silybin and isosilybin are its main components, and synthesized from coupling of taxifolin and coniferyl alcohol. Here, the biosynthetic pathways of taxifolin and coniferyl alcohol were reconstructed in Saccharomyces cerevisiae for the first time. To alleviate substantial burden caused by a great deal of genetic manipulation, expression of the enzymes (e.g. ZWF1, TYR1 and ARO8) playing multiple roles in the relevant biosynthetic pathways was selectively optimized. The strain YT1035 overexpressing seven heterologous enzymes and five native enzymes and the strain YC1053 overexpressing seven heterologous enzymes and four native enzymes, respectively produce 336.8 mg/L taxifolin and 201.1 mg/L coniferyl alcohol. Silybin and isosilybin are synthesized from taxifolin and coniferyl alcohol under catalysis of APX1t (the truncated milk thistle peroxidase), with a yield of 62.5%. This study demonstrates an approach for producing silybin and isosilybin from glucose for the first time.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Silibina/metabolismo , Silimarina/análogos & derivados , Silimarina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA