Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0213123, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38265214

RESUMEN

The ability to utilize dissolved organic phosphorus (DOP) gives phytoplankton competitive advantages in P-limited environments. Our previous research indicates that the diatom Phaeodactylum tricornutum could grow on glyphosate, a DOP with carbon-phosphorus (C-P) bond and an herbicide, as sole P source. However, direct evidence and mechanism of glyphosate utilization are still lacking. In this study, using physiological and isotopic analysis, combined with transcriptomic profiling, we demonstrated the uptake of glyphosate by P. tricornutum and revealed the candidate responsible genes. Our data showed a low efficiency of glyphosate utilization by P. tricornutum, suggesting that glyphosate utilization costs energy and that the alga possessed an herbicide-resistant type of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase. Compared to the P-limited cultures, the glyphosate-grown P. tricornutum cells up-regulated genes involved in DNA replication, cell growth, transcription, translation, carbon metabolism, and many genes encoding antioxidants. Additionally, cellular C and silicon (Si) increased remarkably while cellular nitrogen (N) declined in the glyphosate-grown P. tricornutum, leading to higher Si:C and Si:N ratios, which corresponded to the up-regulation of genes involved in the C metabolism and Si uptake and the down-regulation of those encoding N uptake. This has the potential to enhance C and Si export to the deep sea when P is limited but phosphonate is available. In sum, our study documented how P. tricornutum could utilize the herbicide glyphosate as P nutrient and how glyphosate utilization may affect the element content and stoichiometry in this diatom, which have important ecological implications in the future ocean.IMPORTANCEGlyphosate is the most widely used herbicide in the world and could be utilized as phosphorus (P) source by some bacteria. Our study first revealed that glyphosate could be transported into Phaeodactylum tricornutum cells for utilization and identified putative genes responsible for glyphosate uptake. This uncovers an alternative strategy of phytoplankton to cope with P deficiency considering phosphonate accounts for about 25% of the total dissolved organic phosphorus (DOP) in the ocean. Additionally, accumulation of carbon (C) and silicon (Si), as well as elevation of Si:C ratio in P. tricornutum cells when grown on glyphosate indicates glyphosate as the source of P nutrient has the potential to result in more C and Si export into the deep ocean. This, along with the differential ability to utilize glyphosate among different species, glyphosate supply in dissolved inorganic phosphorus (DIP)-depleted ecosystems may cause changes in phytoplankton community structure. These insights have implications in evaluating the effects of human activities (use of Roundup) and climate change (potentially reducing DIP supply in sunlit layer) on phytoplankton in the future ocean.


Asunto(s)
Diatomeas , Herbicidas , Organofosfonatos , Humanos , Glifosato , Silicio/metabolismo , Fósforo/metabolismo , Materia Orgánica Disuelta , Ecosistema , Fitoplancton/metabolismo , Herbicidas/metabolismo , Carbono/metabolismo , Organofosfonatos/metabolismo
2.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822656

RESUMEN

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Asunto(s)
Cambio Climático , Floraciones de Algas Nocivas , Salinidad , Fotosíntesis , Fitoplancton/crecimiento & desarrollo , Fitoplancton/fisiología , Carbono/metabolismo , Carbono/análisis
3.
Appl Environ Microbiol ; 89(11): e0115623, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37874280

RESUMEN

IMPORTANCE: This study represents the first that investigates in situ virus infection in dinoflagellate blooms. Our findings reveal highly similar viral assemblages that infected the bloom species Prorocentrum shikokuense and a co-adapted metabolic relationship between the host and the viruses in the blooms, which varied between the prolonged and the short-lived blooms of the same dinoflagellate species. These findings fill the gap in knowledge regarding the identity and behavior of viruses in a dinoflagellate bloom and shed light on what appears to be the complex mode of infection. The novel insight will be potentially valuable for fully understanding and modeling the role of viruses in regulating blooms of dinoflagellates and other algae.


Asunto(s)
Dinoflagelados , Virosis , Humanos , Floraciones de Algas Nocivas
4.
Plant Physiol ; 190(4): 2295-2314, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36149329

RESUMEN

Unlike in terrestrial and freshwater ecosystems, light fields in oceans fluctuate due to both horizontal current and vertical mixing. Diatoms thrive and dominate the phytoplankton community in these fluctuating light fields. However, the molecular mechanisms that regulate diatom acclimation and adaptation to light fluctuations are poorly understood. Here, we performed transcriptome sequencing, metabolome profiling, and 13C-tracer labeling on the model diatom Phaeodactylum tricornutum. The diatom acclimated to constant light conditions was transferred to six different light conditions, including constant light (CL5d), short-term (1 h) high light (sHL1h), and short-term (1 h) and long-term (5 days) mild or severe light fluctuation conditions (mFL1h, sFL1h, mFL5d, and sFL5d) that mimicked land and ocean light levels. We identified 2,673 transcripts (25% of the total expressed genes) expressed differentially under different fluctuating light regimes. We also identified 497 transcription factors, 228 not reported previously, which exhibited higher expression under light fluctuations, including 7 with a light-sensitive PAS domain (Per-period circadian protein, Arnt-aryl hydrocarbon receptor nuclear translocator protein, Sim-single-minded protein) and 10 predicted to regulate genes related to light-harvesting complex proteins. Our data showed that prolonged preconditioning in severe light fluctuation enhanced photosynthesis in P. tricornutum under this condition, as evidenced by increased oxygen evolution accompanied by the upregulation of Rubisco and light-harvesting proteins. Furthermore, severe light fluctuation diverted the metabolic flux of assimilated carbon preferentially toward fatty acid storage over sugar and protein. Our results suggest that P. tricornutum use a series of complex and different responsive schemes in photosynthesis and carbon metabolism to optimize their growth under mild and severe light fluctuations. These insights underscore the importance of using more intense conditions when investigating the resilience of phytoplankton to light fluctuations.


Asunto(s)
Diatomeas , Diatomeas/genética , Diatomeas/metabolismo , Transcriptoma/genética , Ecosistema , Fotosíntesis/genética , Carbono/metabolismo , Luz
5.
Glob Chang Biol ; 29(23): 6558-6571, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37740668

RESUMEN

Coral reefs thrive in the oligotrophic ocean and rely on symbiotic algae to acquire nutrients. Global warming is projected to intensify surface ocean nutrient deficiency and anthropogenic discharge of wastes with high nitrogen (N): phosphorus (P) ratios can exacerbate P nutrient limitation. However, our understanding on how symbiotic algae cope with P deficiency is limited. Here, we investigated the responses of a coral symbiotic species of Symbiodiniaceae, Cladocopium goreaui, to P-limitation by examining its physiological performance and transcriptomic profile. Under P stress, C. goreaui exhibited decreases in algal growth, photosynthetic efficiency, and cellular P content but enhancement in carbon fixation, N assimilation, N:P ratio, and energy metabolism, with downregulated expression of carbohydrate exporter genes. Besides, C. goreaui showed flexible mechanisms of utilizing different dissolved organic phosphorus to relieve P deficiency. When provided glycerol phosphate, C. goreaui hydrolyzed it extracellularly to produce phosphate for uptake. When grown on phytate, in contrast, C. goreaui upregulated the endocytosis pathway while no dissolved inorganic phosphorus was released into the medium, suggesting that phytate was transported into the cell, potentially via the endocytosis pathway. This study sheds light on the survival strategies of C. goreaui and potential weakening of its role as an organic carbon supplier in P-limited environments, underscoring the importance of more systematic investigation on future projections of such effects.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Fósforo/metabolismo , Simbiosis , Ácido Fítico/metabolismo , Arrecifes de Coral , Océanos y Mares , Fosfatos/metabolismo , Dinoflagelados/fisiología
6.
Environ Sci Technol ; 57(8): 3391-3401, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36800204

RESUMEN

Scleractinian corals have been observed to be capable of accumulating microplastics from reef environments; however, the tolerant mechanism is poorly known. Here, we examined the response of Porites pukoensis to microplastic pollution by analyzing algal symbiont density, energetic metabolism, and caspase3 activities (representing the apoptosis level) in the coral-Symbiodiniaceae association. The environments of three fringing reef regions along the south coast of Sanya City, Hainan Province of China, were polluted by microplastics (for example, microplastic concentrations in the seawater ranged from 3.3 to 46.6 particles L-1), resulting in microplastic accumulation in P. pukoensis (0.4-2.4 particles cm-2). The accumulation of microplastics was negatively correlated to algal symbiont density in the corals but not to caspase3 activities in the two symbiotic partners, demonstrating that P. pukoensis could tolerate accumulated microplastics despite the decrease of algal symbiont density. Furthermore, results from the carbon stable isotope and cellular energy allocation assay indicated that P. pukoensis obtained energy availability (mainly as lipid reserves) using the switch between heterotrophy and autotrophy to maintain energy balance and cope with accumulated microplastics. Collectively, P. pukoensis achieved tolerance to microplastic pollution by maintaining energy availability, which was largely attributed to its high heterotrophic plasticity.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Microplásticos , Plásticos , Arrecifes de Coral , Procesos Heterotróficos , Isótopos de Carbono
7.
J Phycol ; 59(1): 152-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369667

RESUMEN

Trypsin is an ancient protease best known as a digestive enzyme in animals, and traditionally believed to be absent in plants and protists. However, our recent studies have revealed its wide presence and important roles in marine phytoplankton. Here, to gain a better understanding on the importance of trypsin in phytoplankton, we further surveyed the distribution, diversity, evolution and potential ecological roles of trypsin in global ocean phytoplankton. Our analysis indicated that trypsin is widely distributed both taxonomically and geographically in marine phytoplankton. Furthermore, by systematic comparative analyses we found that algal trypsin could be classified into two subfamilies (trypsin I and trypsin II) and exhibited highly duplicated and diversified during evolution. We also observed markedly different domain sequences and organizations between and within the subfamilies, suggesting potential neofunctionalization. Diatoms contain both subfamilies of trypsin, with higher numbers of genes and more environment-responsive expression of trypsin than other lineages. The duplication and subsequent neofunctionalization of the trypsin family may be important in diatoms for adapting to dynamical environmental conditions, contributing to diatoms' dominance in the coastal oceans. This work advances our knowledge on the distribution and neofunctionalization of this ancient enzyme and creates a new window of research on phytoplankton biology.


Asunto(s)
Diatomeas , Fitoplancton , Animales , Fitoplancton/genética , Tripsina/metabolismo , Prevalencia , Diatomeas/genética , Océanos y Mares
8.
J Phycol ; 59(6): 1347-1352, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844083

RESUMEN

Increases of atmospheric CO2 cause ocean acidification (OA) and global warming, the latter of which can stratify the water column and impede nutrient supply from deep water. Phosphorus (P) is an essential nutrient for phytoplankton to grow. While dissolved inorganic phosphorus (DIP) is the preferred form of P, phytoplankton have evolved alkaline phosphatase (AP) to utilize dissolved organic phosphorus (DOP) when DIP is deficient. Although the function of AP is known to require pH > 7, how OA affects AP activity and hence the capacity of phytoplankton to utilize DOP is poorly understood. Here, we examined the effects of pH conditions (5.5-11) on AP activity from six species of dinoflagellates, an important group of marine phytoplankton. We observed a general pattern that AP activity declined sharply at pH 5.5, peaked between pH 7 and 8, and dropped at pH > 8. However, our data revealed remarkable interspecific variations in optimal pH and niche breadth of pH. Among the species examined, Fugacium kawagutii and Prorocentrum cordatum had an optimal pH at 8, and Alexandrium pacificum, Amphidinium carterae, Effrenium voratum, and Karenia mikimotoi showed an optimal pH of 7. However, whereas A. pacificum and K. mikimotoi had the broadest pH niche for AP (7-10) and F. kawagutii the second (8-10), Am. carterae, E. voratum, and P. cordatum exhibited a narrow pH range. The response of Am. carterae AP to pH changes was verified using purified AP heterologously expressed in Escherichia coli. These results in concert suggest OA will likely differentially impact the capacity of different phytoplankton species to utilize DOP in the projected more acidified and nutrient-limited future ocean.


Asunto(s)
Dinoflagelados , Fosfatasa Alcalina , Dinoflagelados/fisiología , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Fósforo , Fitoplancton/fisiología , Agua de Mar/química , Agua
9.
J Phycol ; 59(1): 70-86, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333277

RESUMEN

Spiny-surfaced species of Prorocentrum form harmful algal blooms, and its taxonomic identity is obscure due to the size and shape variability. Molecular phylogenies reveal two major clades: one for P. cordatum with sequences mainly retrieved as P. minimum, and the other for P. shikokuense with sequences also retrieved as P. dentatum and P. donghaiense. Several closely related clades still need to be characterized. Here, we provide nuclear SSU and LSU rRNA genes, and nuclear ITS region (ITS1-5.8S gene-ITS2) sequences of the strain CCMP3122 isolated from Florida (initially named P. donghaiense) and strains Prorocentrum sp. RCC6871-2 from the Ross Sea, Antarctica. We describe Prorocentrum thermophilum sp. nov. based on the strain CCMP3122, a species also distributed in the open waters of the Gulf of Mexico, New Zealand, and the Arabian Gulf; and Prorocentrum criophilum sp. nov. based on the strain RCC6872, which is distributed in the Antarctic Ocean and Arctic Sea. Prorocentrum thermophilum is roundish (~14 µm long, ~12 µm wide), with an inconspicuous anterior spine-like prolongation under light microscopy, valves with tiny, short knobs (5-7 per µm2 ), and several (<7) large trichocyst pores (~0.3 µm) in the right valve, as well as smaller pores (~0.15 µm). Prorocentrum criophilum is round in valve view (~11 µm long, 10 µm wide) and asymmetrically roundish in lateral view, the periflagellar area was not discernible under light microscopy, valves with very tiny, short knobs (6-10 per µm2 ), and at least 12 large pores in the right valve. Other potentially undescribed species of spiny-surfaced Prorocentrum are discussed.


Asunto(s)
Dinoflagelados , Filogenia , Floraciones de Algas Nocivas , Florida , Orgánulos
10.
Mar Drugs ; 21(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999384

RESUMEN

With rapid growth and high lipid contents, microalgae have become promising environmentally friendly candidates for renewable biodiesel and health supplements in our era of global warming and energy depletion. Various pathways have been explored to enhance algal lipid production, especially gene editing. Previously, we found that the functional loss of PhoD-type alkaline phosphatase (AP), a phosphorus-stress indicator in phytoplankton, could lead to increased lipid contents in the model diatom Phaeodactylum tricornutum, but how the AP mutation may change lipid composition remains unexplored. This study addresses the gap in the research and investigates the effects of PhoD-type AP mutation on the lipid composition and metabolic regulation in P. tricornutum using transcriptomic and lipidomic analyses. We observed significantly modified lipid composition and elevated production of fatty acids, lysophosphatidylcholine, lysophosphatidylethanolamine, ceramide, phosphatidylinositol bisphosphate, and monogalactosylmonoacylglycerol after PhoD_45757 mutation. Meanwhile, genes involved in fatty acid biosynthesis were upregulated in mutant cells. Moreover, the mutant exhibited increased contents of ω-3 long-chain polyunsaturated fatty acid (LC-PUFA)-bound phospholipids, indicating that PhoD_45757 mutation could improve the potential bioavailability of PUFAs. Our findings indicate that AP mutation could influence cellular lipid synthesis and probably redirect carbon toward lipid production and further demonstrate that AP mutation is a promising approach for the development of high-value microalgal strains for biomedical and other applications.


Asunto(s)
Diatomeas , Ácidos Grasos Omega-3 , Microalgas , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Diatomeas/metabolismo , Fosfatasa Alcalina/metabolismo , Fosfolípidos/metabolismo , Ácidos Grasos Insaturados , Ácidos Grasos Omega-3/metabolismo , Microalgas/genética , Microalgas/metabolismo
11.
Appl Environ Microbiol ; 88(2): e0209721, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34757820

RESUMEN

Phytoplankton have evolved a capability to acquire phosphorus (P) from dissolved organic phosphorus (DOP) since the preferred form, dissolved inorganic phosphate (DIP, or Pi), is often limited in parts of the ocean. Phytic acid (PA) is abundantly synthesized in plants and rich in excreta of animals, potentially enriching the DOP pool in coastal oceans. However, whether and how PA can be used by phytoplankton are poorly understood. Here, we investigated PA utilization and underlying metabolic pathways in the diatom model Phaeodactylum tricornutum. The physiological results showed that P. tricornutum could utilize PA as a sole source of P nutrient to support growth. Meanwhile, the replacement of PA for DIP also caused changes in multiple cellular processes, such as inositol phosphate metabolism, photosynthesis, and signal transduction. These results suggest that PA is bioavailable to P. tricornutum and can directly participate in the metabolic pathways of PA-grown cells. However, our data showed that the utilization of PA was markedly less efficient than that of DIP, and PA-grown cells exhibited P and iron (Fe) nutrient stress signals. Implicated in these findings is the potential of complicated responses of phytoplankton to an ambient DOP species, which calls for more systematic investigation. IMPORTANCE PA is abundant in plants and cannot be digested by nonruminant animals. Hence, it is potentially a significant component of the DOP pool in coastal waters. Despite this potential importance, there is little information about its bioavailability to phytoplankton as a source of P nutrient and the molecular mechanisms involved. In this study, we found that part of PA could be utilized by the diatom P. tricornutum to support growth, and another portion of PA can act as a substrate directly participating in various metabolism pathways and cellular processes. However, our physiological and transcriptomic data show that PA-grown cells still exhibited signs of P stress and potential Fe stress. These results have significant implications in phytoplankton P nutrient ecology and provide a novel insight into multifaceted impacts of DOP utilization on phytoplankton nutrition and metabolism.


Asunto(s)
Diatomeas , Fitoplancton , Animales , Hierro/metabolismo , Nutrientes , Fósforo/metabolismo , Ácido Fítico/metabolismo , Fitoplancton/metabolismo , Transcriptoma
12.
Mol Ecol ; 31(12): 3389-3399, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35445467

RESUMEN

Facing phosphate deficiency, phytoplankton use alkaline phosphatase (AP) to scavenge dissolved organophosphate (DOP). AP is a multitype (e.g., PhoA, PhoD) family of hydrolases and is known as a promiscuous enzyme with broad DOP substrate compatibility. Yet, whether the multiple types differentiate on substrates and collaborate to provide physiological flexibility remain elusive. Here we identify PhoA and PhoDs and document the functional differentiation between PhoA and a PhoD (PhoD_45757) in Phaeodactylum tricornutum. CRISPR/Cas9-based mutations and physiological analyses reveal that (1) PhoA is a secreted enzyme and contributes the majority of total AP activity whereas PhoD_45757 is intracellular and contributes a minor fraction of the total AP activity, (2) AP gene expression compensates for each other after one is disrupted, (3) the DOP→PhoA→phosphate_uptake and the DOP_uptake→PhoD→phosphate pathways function interchangeably for some DOP substrates. These findings shed light on the underpinning of AP's multiformity and have important implications in phytoplankton phosphorus-nutrient niche differentiation, physiological plasticity, and competitive strategy.


Asunto(s)
Diatomeas , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Diatomeas/genética , Organofosfatos/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Fitoplancton/genética
13.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33355106

RESUMEN

Rising atmospheric CO2 concentrations are causing ocean acidification (OA) with significant consequences for marine organisms. Because CO2 is essential for photosynthesis, the effect of elevated CO2 on phytoplankton is more complex and the mechanism is poorly understood. Here we applied RNA-seq and iTRAQ proteomics to investigate the impacts of CO2 increase (from ∼400 to 1000 ppm) on the temperate coastal marine diatom Skeletonema marinoi We identified 32,389 differentially expressed genes (DEGs) and 1,826 differentially expressed proteins (DEPs) from elevated CO2 conditions, accounting for 48.5% of total genes and 25.9% of total proteins we detected, respectively. Elevated pCO2 significantly inhibited the growth of S marinoi, and the 'omic' data suggested that this might be due to compromised photosynthesis in the chloroplast and raised mitochondrial energy metabolism. Furthermore, many genes/proteins associated with nitrogen metabolism, transcriptional regulation, and translational regulation were markedly up-regulated, suggesting enhanced protein synthesis. In addition, S marinoi exhibited higher capacity of ROS production and resistance to oxidative stress. Overall, elevated pCO2 seems to repress photosynthesis and growth of S marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.Importance Rising atmospheric CO2 concentrations are causing ocean acidification with significant consequences for marine organisms. Chain-forming centric diatoms of Skeletonema is one of the most successful groups of eukaryotic primary producers with widespread geographic distribution. Among the recognized 28 species, S. marinoi can be a useful model for investigating the ecological, genetic, physiological, and biochemical characteristics of diatoms in temperate coastal regions. In this study, we found that the elevated pCO2 seems to repress photosynthesis and growth of S. marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.

14.
Cell Microbiol ; 22(1): e13122, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31634977

RESUMEN

The ability to observe in situ 3D distribution and dynamics of endosymbionts in corals is crucial for gaining a mechanistic understanding of coral bleaching and reef degradation. Here, we report the development of a tissue clearing (TC) coupled with light sheet fluorescence microscopy (LSFM) method for 3D imaging of the coral holobiont at single-cell resolution. The initial applications have demonstrated the ability of this technique to provide high spatial resolution quantitative information of endosymbiont abundance and distribution within corals. With specific fluorescent probes or assays, TC-LSFM also revealed spatial distribution and dynamics of physiological conditions (such as cell proliferation, apoptosis, and hypoxia response) in both corals and their endosymbionts. This tool is highly promising for in situ and in-depth data acquisition to illuminate coral symbiosis and health conditions in the changing marine environment, providing fundamental information for coral reef conservation and restoration.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Simbiosis , Animales , Dinoflagelados/fisiología , Microscopía Fluorescente/métodos
15.
J Phycol ; 57(6): 1674-1678, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34389979

RESUMEN

As is true for many other aspects, genome architecture, evolution, and function in dinoflagellates are enigmatic and, in the meantime, continuous inspiration for scientific quests. Recent third-generation sequencing and Hi-C linkage analyses brought new insights into the spatial organization of symbiodiniacean genomes, revealing the topologically associated domains, discrete gene clusters and their cis and trans orientations, and relationships with transcription. Where do these new findings bring us in dinoflagellate genomics? Here, we aim to place these new results in the backdrop of the long history of research on this topic and in the context of what critical questions remain to be pursued in the future. The new data suggest, pending verification of other complete chromosome assemblies, a potential evolutionary trend in chromosome number decrease and length increase within the Symbiodiniaceae. While questions remain about the mechanics of the three-dimensional chromosome structure and cell cycle-related DNA replication, the mechanisms of gene transcription and genome size evolution, these latest findings set new starting points for further inquiries.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Genoma
16.
J Phycol ; 57(3): 703-707, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33608874

RESUMEN

Alkaline phosphatase (AP) in plants and algae is known to hydrolyze dissolved organophosphate (DOP) in order to obtain phosphorus when the preferred dissolved inorganic phosphorus (DIP) is present in limited supply. By conducting comparative analyses of physiologies and transcriptomes on a mutant of PhoA type AP (mPhoA) and wild type (WT) of the marine diatom Phaeodactylum tricornutum CCAP 1055/1 under P-replete and P-depleted conditions, we document other roles of this gene than DOP scavenging. PhoA mutation created by CRISPR/Cas9 diminished its DOP hydrolase activity but led to significant increases in cellular contents of pigment, carbon, and lipids, photosynthetic rate, growth rate, and the transcriptional levels of their corresponding metabolic pathways. All the results in concert indicate that besides P-nutrient scavenging under DIP deficiency, AP also functions, under the P-replete condition, to constrain pigment biosynthesis, photosynthesis, fatty acid biosynthesis, and cell division. These functions have important implications in maintaining metabolic homeostasis and preventing premature cell division.


Asunto(s)
Fosfatasa Alcalina , Diatomeas , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Diatomeas/genética , Fósforo , Fotosíntesis , Transcriptoma
17.
J Phycol ; 57(2): 577-591, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33191494

RESUMEN

Algal lipids are important molecules to store energy in algae and transfer energy in the marine food chain, and are potential materials for high value nutraceuticals (e.g., omega-3 fatty acids) or biofuel production. However, how lipid biosynthesis is regulated is not well understood in many species including Eutreptiella from the phylum of Euglenozoa. Here, we characterized the fatty acid (FA) profile of an Eutreptiella species isolated from Long Island Sound, USA, using gas chromatography-tandem mass spectrometry (GC/MS/MS) and investigated their biosynthesis pathways by transcriptome sequencing. We discovered 24 types of FAs including a relatively high proportion of long-chain unsaturated FAs. The abundances of C16, C18, and saturated FAs decreased when phosphate in the culture medium was depleted. Among the 24 FAs, docosahexaenoic acid (C22:6∆4,7,10,13,16,19 ) was most abundant, suggesting that Eutreptiella sp. preferentially invests in the synthesis of long-chain polyunsaturated fatty acids (LC-PFAs). Further transcriptomic analysis revealed that Eutreptiella sp. likely synthesizes LC-PFAs via ∆8 pathway and uses type I and II fatty acid synthases. Using RT-qPCR, we found that some of the lipid synthesis genes, such as ß-ketoacyl-ACP reductase, fatty acid desaturase, acetyl-CoA carboxylase, acyl carrier protein, ∆8 desaturase, and Acyl-ACP thioesterase, were more actively expressed during light period, and two carbon fixation genes were up-regulated in the high-lipid illuminated cultures, suggesting a linkage between photosynthesis and lipid production. The lipid profile renders Eutreptiella sp. a nutritional prey and valuable source for nutraceuticals, and the biosynthesis pathway documented here will be useful for future research and applications.


Asunto(s)
Euglenozoos , Transcriptoma , Ácidos Grasos , Ácidos Grasos Insaturados , Espectrometría de Masas en Tándem
18.
J Phycol ; 57(4): 1187-1198, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33650119

RESUMEN

The physiological response of symbiotic Symbiodiniaceae to high temperature is believed to result in coral bleaching. However, the potential effect of nitrogen availability on heat acclimatization of symbiotic Symbiodiniaceae is still unclear. In this study, physiological responses of Symbiodiniaceae Cladocopium goreaui to temperature and nitrogen nutrient stress conditions were investigated. Nitrogen deficiency caused significant declines in cell concentration and chlorophyll content per cell, but significant increases in nitric oxide synthase activity, caspase3 activation level, and cellular carbon content of C. goreaui at normal temperature. Algal cells under high temperature and nitrogen deficiency showed significant rises in Fv/Fm, catalase activity, and caspase3 activation level, but no significant changes in cell yield, cell size, chlorophyll content, superoxide dismutase, nitric oxide synthase activity, and cellular contents of nitrogen and carbon, in comparison with those under normal temperature and nitrogen deficiency. Growth, chlorophyll, and nitrogen contents of algal cells under the high temperature and nitrogen-replete conditions were significantly higher than those under high temperature or nitrogen deficiency alone, whereas nitric oxide synthase activity, superoxide dismutase activity, catalase activity, carbon content, and caspase3 activation level exhibited opposite trends of variation. Transcriptomic and network analyses revealed ion transport and metabolic processes mainly involved in regulating these physiological activities under different temperature and nitrogen nutrient. The totality of results shows that high temperature activates stress responses, induces antioxidant capacity of apoptosis, and limits the growth rate of C. goreaui. Adequate nitrogen nutrient can improve the resilience of this Symbiodiniaceae against heat stress through repressed apoptosis, promoted ion transport, and optimized metabolism.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Nitrógeno , Simbiosis , Temperatura
19.
Environ Microbiol ; 22(5): 1861-1869, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32077205

RESUMEN

The capacity of phytoplankton to utilize dissolved organic phosphorus (DOP) plays an important role in their competition for resources when the availability of dissolved inorganic phosphorus (DIP) is low in the aquatic systems. Here, we explored the physiological and molecular responses of a globally distributed marine diatom, Skeletonema costatum, in utilizing adenosine-5'-triphosphate (ATP) based on incubation experiments under ATP, DIP-replete, and DIP-depleted conditions. The results show that ATP supports the growth of S. costatum as efficiently as DIP. The pathway of S. costatum involved in utilizing ATP is not related to alkaline phosphatase (AP), an important DOP hydrolase, although extracellular hydrolysis is involved. The transcriptome analysis revealed several transcripts related to the hydrolase activity (e.g. NAD+ diphosphatase), which were significantly upregulated in the ATP culture group, indicating their possible involvement in ATP hydrolysis. Meanwhile, ATP-grown S. costatum exhibited downregulation of the genes related to a series of metabolic activities (e.g. purine metabolism), apparently to adapt to ATP condition.


Asunto(s)
Adenosina Trifosfato/metabolismo , Diatomeas/metabolismo , Fósforo/metabolismo , Fosfatasa Alcalina/genética , Biología Computacional , Dinoflagelados/genética , Dinoflagelados/metabolismo , Perfilación de la Expresión Génica , Hidrolasas/genética , Hidrolasas/metabolismo , Fitoplancton/metabolismo , Transcriptoma , Regulación hacia Arriba
20.
J Phycol ; 56(6): 1738-1747, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32920818

RESUMEN

Previous studies have documented extensive methylation of CpG islands and abundant methyltransferase gene (DNMT) in Fugacium kawagutii (formerly Symbiodinium kawagutii) genome. However, whether DNA methylation plays a role in regulating gene expression in this and other dinoflagellates remains unclear. Here, we characterized gene body methylation levels using methylation-specific PCR (MS-PCR) and bisulfite sequencing PCR (BSP) and measured transcriptional levels for three photosystem genes in F. kawagutii under different light conditions (20, 100, and 600 µE · m-2  · s-1 ). To explore the association of methylation with DNA methylase, the expression of DNA methyltransferase (Symbio-DIRS-Dnmt3) was also measured. Our results showed that peridinin-chlorophyll a-binding protein (PCP), light-harvesting complex (LHC), and chlorophyll a-c-binding protein complex (acpPC) gene expression was all significantly up-regulated under low light in which their methylation level was down-regulated, constant, and elevated, respectively. Symbio-DIRS-Dnmt3 exhibited elevated transcriptional level under increased light intensity. The results led us to hypothesize that DNA methylation level can be modulated by environmental conditions such as irradiance, probably through the regulation of Symbio-DIRS-Dnmt3 transcription level, and in turn may regulate the expression of genes in F. kawagutii. Further study is needed to determine whether the same gene methylation and expression characteristics reported here occur in other dinoflagellates and to explore their ecological implications.


Asunto(s)
Dinoflagelados , Clorofila A , Luz , Metilación , Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA