Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Med Vet Entomol ; 38(1): 99-107, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37715613

RESUMEN

Ticks are not only bloodsucking ectoparasites but also important vectors of tick-borne diseases (TBDs), posing significant threats to public and animal health. Domesticated animals serve as critical hosts for numerous ticks, highlighting the importance of understanding tick infestations in Taiwan. To address this knowledge gap, we conducted a nationwide survey to identify ticks on domesticated animals and associated environments in 2018 and 2019. A total of 6,205 ticks were collected from 1,337 host animals, revealing the presence of seven tick species, with Rhipicephalus microplus, and Rhipicephalus sanguineus being the dominant species. High infestation rates and widespread distribution of ticks were observed on domesticated animals, especially on dogs and cattle (yellow cattle and angus cattle), and the neighbouring grassland of yellow cattle. While this study has certain limitations, it provides valuable insights into the distribution and prevalence of ticks on domesticated animals in Taiwan and their implications for controlling TBDs. Further research is needed to comprehensively understand the complex interactions among ticks, hosts and pathogens.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de los Perros , Rhipicephalus , Infestaciones por Garrapatas , Enfermedades por Picaduras de Garrapatas , Animales , Bovinos , Perros , Animales Domésticos , Taiwán/epidemiología , Salud Pública , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Enfermedades de los Perros/parasitología
2.
Circulation ; 143(19): 1874-1890, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33682427

RESUMEN

BACKGROUND: Diastolic dysfunction (DD) is associated with the development of heart failure and contributes to the pathogenesis of other cardiac maladies, including atrial fibrillation. Inhibition of histone deacetylases (HDACs) has been shown to prevent DD by enhancing myofibril relaxation. We addressed the therapeutic potential of HDAC inhibition in a model of established DD with preserved ejection fraction. METHODS: Four weeks after uninephrectomy and implantation with deoxycorticosterone acetate pellets, when DD was clearly evident, 1 cohort of mice was administered the clinical-stage HDAC inhibitor ITF2357/Givinostat. Echocardiography, blood pressure measurements, and end point invasive hemodynamic analyses were performed. Myofibril mechanics and intact cardiomyocyte relaxation were assessed ex vivo. Cardiac fibrosis was evaluated by picrosirius red staining and second harmonic generation microscopy of left ventricle (LV) sections, RNA sequencing of LV mRNA, mass spectrometry-based evaluation of decellularized LV biopsies, and atomic force microscopy determination of LV stiffness. Mechanistic studies were performed with primary rat and human cardiac fibroblasts. RESULTS: HDAC inhibition normalized DD without lowering blood pressure in this model of systemic hypertension. In contrast to previous models, myofibril relaxation was unimpaired in uninephrectomy/deoxycorticosterone acetate mice. Furthermore, cardiac fibrosis was not evident in any mouse cohort on the basis of picrosirius red staining or second harmonic generation microscopy. However, mass spectrometry revealed induction in the expression of >100 extracellular matrix proteins in LVs of uninephrectomy/deoxycorticosterone acetate mice, which correlated with profound tissue stiffening based on atomic force microscopy. ITF2357/Givinostat treatment blocked extracellular matrix expansion and LV stiffening. The HDAC inhibitor was subsequently shown to suppress cardiac fibroblast activation, at least in part, by blunting recruitment of the profibrotic chromatin reader protein BRD4 (bromodomain-containing protein 4) to key gene regulatory elements. CONCLUSIONS: These findings demonstrate the potential of HDAC inhibition as a therapeutic intervention to reverse existing DD and establish blockade of extracellular matrix remodeling as a second mechanism by which HDAC inhibitors improve ventricular filling. Our data reveal the existence of pathophysiologically relevant covert or hidden cardiac fibrosis that is below the limit of detection of histochemical stains such as picrosirius red, highlighting the need to evaluate fibrosis of the heart using diverse methodologies.


Asunto(s)
Matriz Extracelular/fisiología , Soplos Cardíacos/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Remodelación Ventricular/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones
3.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31310161

RESUMEN

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Asunto(s)
Biomimética/métodos , Ventrículos Cardíacos/ultraestructura , Función Ventricular/fisiología , Adulto , Animales , Femenino , Corazón/fisiología , Ventrículos Cardíacos/citología , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Miocardio/citología , Miocardio/ultraestructura , Técnicas de Cultivo de Órganos/métodos , Porcinos , Transcriptoma/fisiología
4.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443187

RESUMEN

Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined. Methods: Adult pigs (30-40 kg) were subjected to closed-chest 90-min left anterior descending artery ischemia followed by 72 h of reperfusion and were randomized to receive an intracoronary bolus of either mdivi-1 (1.2 mg/kg, a small molecule inhibitor of the mitochondrial fission protein, Drp1) or vehicle control, 10-min prior to reperfusion. The left ventricular (LV) size and function were both assessed by transthoracic echocardiography prior to AMI and after 72 h of reperfusion. MI size and the area-at-risk (AAR) were determined using dual staining with Tetrazolium and Evans blue. Heart samples were collected for histological determination of fibrosis and for electron microscopic analysis of mitochondrial morphology. Results: A total of 14 pigs underwent the treatment protocols (eight control and six mdivi-1). Administration of mdivi-1 immediately prior to the onset of reperfusion did not reduce MI size (MI size as % of AAR: Control 49.2 ± 8.6 vs. mdivi-1 50.5 ± 11.4; p = 0.815) or preserve LV systolic function (LV ejection fraction %: Control 67.5 ± 0.4 vs. mdivi-1 59.6 ± 0.6; p = 0.420), when compared to vehicle control. Similarly, there were no differences in mitochondrial morphology or myocardial fibrosis between mdivi-1 and vehicle control groups. Conclusion: Our pilot study has shown that treatment with mdivi-1 (1.2 mg/kg) at the onset of reperfusion did not reduce MI size or preserve LV function in the clinically-relevant closed-chest pig AMI model. A larger study, testing different doses of mdivi-1 or using a more specific Drp1 inhibitor are required to confirm these findings.


Asunto(s)
Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Quinazolinonas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Dinámicas Mitocondriales/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Proyectos Piloto , Porcinos , Función Ventricular Izquierda/efectos de los fármacos
5.
J Mol Cell Cardiol ; 112: 74-82, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28886967

RESUMEN

Class I histone deacetylase (HDAC) inhibitors block hypertrophy and fibrosis of the heart by suppressing pathological signaling and gene expression programs in cardiac myocytes and fibroblasts. The impact of HDAC inhibition in unstressed cardiac cells remains poorly understood. Here, we demonstrate that treatment of cultured cardiomyocytes with small molecule HDAC inhibitors leads to dramatic induction of c-Jun amino-terminal kinase (JNK)-interacting protein-1 (JIP1) mRNA and protein expression. In contrast to prior findings, elevated levels of endogenous JIP1 in cardiomyocytes failed to significantly alter JNK signaling or cardiomyocyte hypertrophy. Instead, HDAC inhibitor-mediated induction of JIP1 was required to stimulate expression of the kinesin heavy chain family member, KIF5A. We provide evidence for an HDAC-dependent regulatory circuit that promotes formation of JIP1:KIF5A:microtubule complexes that regulate intracellular transport of cargo such as autophagosomes. These findings define a novel role for class I HDACs in the control of the JIP1/kinesin axis in cardiomyocytes, and suggest that HDAC inhibitors could be used to alter microtubule transport in the heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Histona Desacetilasas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Autofagia/efectos de los fármacos , Cardiomegalia/genética , Cardiomegalia/patología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
6.
Can J Physiol Pharmacol ; 94(11): 1178-1186, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27486838

RESUMEN

Much diseased human myocardial tissue is fibrotic and stiff, which increases the work that the ventricular myocytes must perform to maintain cardiac output. The hypothesis tested is that the increased load due to greater stiffness of the substrata drives sarcomere assembly of cells, thus strengthening them. Neonatal rat ventricular myocytes (NRVM) were cultured on polyacrylamide or polydimethylsiloxane substrates with stiffness of 10 kPa, 100 kPa, or 400 kPa, or glass with stiffness of 61.9 GPa. Cell size increased with stiffness. Two signaling pathways were explored, phosphorylation of focal adhesion kinase (p-FAK) and lipids by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular distributions of both were determined in the sarcomeric fraction by antibody localization, and total amounts were measured by Western or dot blotting, respectively. More p-FAK and PIP2 distributed to the sarcomeres of NRVM grown on stiffer substrates. Actin assembly involves the actin capping protein Z (CapZ). Both actin and CapZ dynamic exchange were significantly increased on stiffer substrates when assessed by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein tags. Blunting of actin FRAP by FAK inhibition implicates linkage from mechano-signalling pathways to cell growth. Thus, increased stiffness of cardiac disease can be modeled with polymeric materials to understand how the microenvironment regulates cardiac hypertrophy.

7.
J Muscle Res Cell Motil ; 36(4-5): 329-37, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26429793

RESUMEN

The heart is exquisitely sensitive to mechanical stimuli and adapts to increased demands for work by enlarging the cardiomyocytes. In order to determine links between mechano-transduction mechanisms and hypertrophy, neonatal rat ventricular myocytes (NRVM) were subjected to physiologic strain for analysis of the dynamics of the actin capping protein, CapZ, and its post-translational modifications (PTM). CapZ binding rates were assessed after strain by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) expressed by a GFP-CapZß1 adenovirus. To assess the role of the protein kinase C epsilon isoform (PKCε), rest or cyclic strain were combined with specific PKCε activation by constitutively active PKCε, or by inhibition with dominant negative PKCε (dnPKCε) expression. Significant increases of CapZ FRAP kinetics with strain were blunted by dnPKCε, suggesting that PKCε is involved in mechano-transduction signaling. Similar combinations of strain and PKC regulation in NRVMs were studied by PTM profiles of CapZß1 using quantitative two-dimensional gel electrophoresis. The significantly increased charge on CapZ seen with mechanical strain was reversed by the addition of dnPKCε. Potential clinical relevance was confirmed in vivo by PTMs of CapZ in the failing heart of one-year old transgenic mice over-expressing PKCε. Furthermore, with strain there was significant PKCε translocation to the Z-disc and co-localization with CapZß1 or α-actinin, which was quantified on confocal images. A hypothetical model is presented proposing that one destination of the mechanotransduction signaling pathways might be for PTMs of CapZ thereby regulating actin capping and filament assembly.


Asunto(s)
Proteína CapZ/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estrés Mecánico , Actinina/genética , Actinina/metabolismo , Animales , Proteína CapZ/genética , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Proteína Quinasa C-epsilon/genética , Transporte de Proteínas/fisiología , Ratas
8.
Atherosclerosis ; 390: 117450, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266625

RESUMEN

BACKGROUND AND AIMS: New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype. METHODS AND RESULTS: In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline. CONCLUSIONS: We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.


Asunto(s)
Quinazolinonas , Lesiones del Sistema Vascular , Humanos , Ratones , Animales , Hiperplasia/patología , Lesiones del Sistema Vascular/genética , Reprogramación Metabólica , Movimiento Celular , Músculo Liso Vascular/patología , Neointima/metabolismo , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Proliferación Celular
9.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575093

RESUMEN

Passive stiffness of the heart is determined largely by extracellular matrix and titin, which functions as a molecular spring within sarcomeres. Titin stiffening is associated with the development of diastolic dysfunction (DD), while augmented titin compliance appears to impair systolic performance in dilated cardiomyopathy. We found that myofibril stiffness was elevated in mice lacking histone deacetylase 6 (HDAC6). Cultured adult murine ventricular myocytes treated with a selective HDAC6 inhibitor also exhibited increased myofibril stiffness. Conversely, HDAC6 overexpression in cardiomyocytes led to decreased myofibril stiffness, as did ex vivo treatment of mouse, rat, and human myofibrils with recombinant HDAC6. Modulation of myofibril stiffness by HDAC6 was dependent on 282 amino acids encompassing a portion of the PEVK element of titin. HDAC6 colocalized with Z-disks, and proteomics analysis suggested that HDAC6 functions as a sarcomeric protein deacetylase. Finally, increased myofibril stiffness in HDAC6-deficient mice was associated with exacerbated DD in response to hypertension or aging. These findings define a role for a deacetylase in the control of myofibril function and myocardial passive stiffness, suggest that reversible acetylation alters titin compliance, and reveal the potential of targeting HDAC6 to manipulate the elastic properties of the heart to treat cardiac diseases.


Asunto(s)
Miofibrillas , Sarcómeros , Animales , Conectina/química , Conectina/genética , Conectina/metabolismo , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Humanos , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Ratas , Sarcómeros/metabolismo
10.
Cardiovasc Res ; 118(2): 517-530, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33705529

RESUMEN

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction. The latter manifests as exercise intolerance, angina, and dyspnoea. There is currently no specific treatment for improving diastolic function in HCM. Here, we investigated whether myeloperoxidase (MPO) is expressed in cardiomyocytes and provides a novel therapeutic target for alleviating diastolic dysfunction in HCM. METHODS AND RESULTS: Human cardiomyocytes derived from control-induced pluripotent stem cells (iPSC-CMs) were shown to express MPO, with MPO levels being increased in iPSC-CMs generated from two HCM patients harbouring sarcomeric mutations in the MYBPC3 and MYH7 genes. The presence of cardiomyocyte MPO was associated with higher chlorination and peroxidation activity, increased levels of 3-chlorotyrosine-modified cardiac myosin binding protein-C (MYBPC3), attenuated phosphorylation of MYBPC3 at Ser-282, perturbed calcium signalling, and impaired cardiomyocyte relaxation. Interestingly, treatment with the MPO inhibitor, AZD5904, reduced 3-chlorotyrosine-modified MYBPC3 levels, restored MYBPC3 phosphorylation, and alleviated the calcium signalling and relaxation defects. Finally, we found that MPO protein was expressed in healthy adult murine and human cardiomyocytes, and MPO levels were increased in diseased hearts with left ventricular hypertrophy. CONCLUSION: This study demonstrates that MPO inhibition alleviates the relaxation defect in hypertrophic iPSC-CMs through MYBPC3 phosphorylation. These findings highlight cardiomyocyte MPO as a novel therapeutic target for improving myocardial relaxation associated with HCM, a treatment strategy which can be readily investigated in the clinical setting, given that MPO inhibitors are already available for clinical testing.


Asunto(s)
Cardiomiopatía Hipertrófica/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Peroxidasa/antagonistas & inhibidores , Función Ventricular Izquierda/efectos de los fármacos , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/enzimología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Humanos , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Masculino , Ratones Endogámicos C57BL , Mutación Missense , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Peroxidasa/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
11.
Physiol Rep ; 9(17): e15011, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34523260

RESUMEN

RNA binding motif 20 (RBM20) cardiomyopathy has been detected in approximately 3% of populations afflicted with dilated cardiomyopathy (DCM). It is well conceived that RBM20 cardiomyopathy is provoked by titin isoform switching in combination with resting Ca2+ leaking. In this study, we characterized the cardiac function in Rbm20 knockout (KO) rats at 3-, 6-, 9-, and 12-months of age and examined the effect of the ryanodine receptor stabilizer S107 on resting intracellular levels and cardiomyocyte contractile properties. Our results revealed that even though Rbm20 depletion promoted expression of larger titin isoform and reduced myocardial stiffness in young rats (3 months of age), the established DCM phenotype required more time to embellish. S107 restored elevated intracellular Ca2+ to normal levels and ameliorated cardiomyocyte contractile properties in isolated cardiomyocytes from 6-month-old Rbm20 KO rats. However, S107 failed to preserve cardiac homeostasis in Rbm20 KO rats at 12 months of age, unexpectedly, likely due to the existence of multiple pathogenic mechanisms. Taken together, our data suggest the therapeutic promises of S107 in the management of RBM20 cardiomyopathy.


Asunto(s)
Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Tiazepinas/farmacología , Animales , Células Cultivadas , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas de Unión al ARN/genética , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Ratas Transgénicas , Canal Liberador de Calcio Receptor de Rianodina/genética
12.
Stem Cell Reports ; 16(3): 519-533, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33636116

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for biomedical research. However, they are immature, which is a barrier to modeling adult-onset cardiovascular disease. Here, we sought to develop a simple method that could drive cultured hiPSC-CMs toward maturity across a number of phenotypes, with the aim of utilizing mature hiPSC-CMs to model human cardiovascular disease. hiPSC-CMs were cultured in fatty acid-based medium and plated on micropatterned surfaces. These cells display many characteristics of adult human cardiomyocytes, including elongated cell morphology, sarcomeric maturity, and increased myofibril contractile force. In addition, mature hiPSC-CMs develop pathological hypertrophy, with associated myofibril relaxation defects, in response to either a pro-hypertrophic agent or genetic mutations. The more mature hiPSC-CMs produced by these methods could serve as a useful in vitro platform for characterizing cardiovascular disease.


Asunto(s)
Cardiomiopatía Hipertrófica/fisiopatología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Línea Celular , Células Cultivadas , Medios de Cultivo/química , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miofibrillas/fisiología , Fenilefrina/farmacología , Sarcómeros/fisiología , Análisis de Secuencia de ARN , Transducción de Señal
13.
Nutr Cancer ; 62(2): 229-36, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20099197

RESUMEN

Longan flower extract (LFE) has been shown to exhibit free radical scavenging ability and anti-inflammatory effects. However, the effect of LFE treatment on the growth of colorectal cancer cells has not been evaluated. This study investigated the effect of LFE on two colorectal cancer cell lines, SW-480 and Colo 320DM, and the possible mechanisms involved. LFE-treated cells were assessed for viability by trypan blue exclusion, for in vitro tumorigenesis by seeding cells in soft agar to allow anchorage independent growth, for cell cycle distribution by flow cytometry, for loss of mitochondrial membrane potential by rhodamine 123 staining, for increased apoptosis by DNA fragmentation assay, and for changes in the levels of proteins involved in cell cycle control and apoptosis by immunoblotting. LFE (25-400 microg/ml) could inhibit proliferation in a dose- and time-dependent manner. The cell cycle of both LFE-treated cell lines showed obvious S phase block. Western blotting further showed the S phase block in these two cell lines was mainly due to cyclin E accumulation and cyclin A decrease. LFE treatment increased rhodamine 123-negative cells and DNA fragmentation in Colo 320DM cells but not in SW480 cells. Increased levels of the apoptosis activation protein, caspase 3, were also found in Colo 320DM cells. The activation of caspase 3 in LFE-treated SW480 cells was not significant. The caspase 3 activation in Colo 320DM cells by LFE was mediated by the suppression of Bcl-2 protein levels. LFE treatment could inhibit the proliferation and malignancy of colorectal cancer cell lines and was associated with S phase block of the cell cycle. An apoptotic mechanism induced by LFE involving a loss of mitochondrial membrane potential and caspase 3 activation was found in Colo 320DM cells but not in SW480 cells. The results of this study indicate that LFE has potential to be developed as a novel functional food or chemopreventive agent for colorectal cancer.


Asunto(s)
División Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Flores/química , Extractos Vegetales/farmacología , Sapindaceae/química , Apoptosis/efectos de los fármacos , Caspasa 3/análisis , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/química , Ciclina A/análisis , Ciclina E/análisis , Fragmentación del ADN , Colorantes Fluorescentes , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/química , Rodamina 123 , Fase S/efectos de los fármacos
14.
EBioMedicine ; 57: 102884, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32653860

RESUMEN

Acute myocardial infarction (AMI) and the heart failure (HF) that often follows are among the leading causes of death and disability worldwide. As such, new treatments are needed to protect the myocardium against the damaging effects of the acute ischaemia and reperfusion injury (IRI) that occurs in AMI, in order to reduce myocardial infarct (MI) size, preserve cardiac function, and improve patient outcomes. In this regard, cardiac mitochondria play a dual role as arbiters of cell survival and death following AMI. Therefore, preventing mitochondrial dysfunction induced by acute myocardial IRI is an important therapeutic strategy for cardioprotection. In this article, we review the role of mitochondria as key determinants of acute myocardial IRI, and we highlight their roles as therapeutic targets for reducing MI size and preventing HF following AMI. In addition, we discuss the challenges in translating mitoprotective strategies into the clinical setting for improving outcomes in AMI patients.


Asunto(s)
Cardiotónicos/uso terapéutico , Insuficiencia Cardíaca/genética , Mitocondrias/genética , Infarto del Miocardio/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Terapia Molecular Dirigida , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/patología
15.
Cond Med ; 2(5): 213-224, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32133438

RESUMEN

Cardiomyopathies represent a heterogeneous group of cardiac disorders that perturb cardiac contraction and/or relaxation, and can result in arrhythmias, heart failure, and sudden cardiac death. Based on morphological and functional differences, cardiomyopathies have been classified into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). It has been well documented that mutations in genes encoding sarcomeric proteins are associated with the onset of inherited cardiomyopathies. However, correlating patient genotype to the clinical phenotype has been challenging because of the complex genetic backgrounds, environmental influences, and lifestyles of individuals. Thus, "scaling down" the focus to the basic contractile unit of heart muscle using isolated single myofibril function techniques is of great importance and may be used to understand the molecular basis of disease-causing sarcomeric mutations. Single myofibril bundles harvested from diseased human or experimental animal hearts, as well as cultured adult cardiomyocytes or human cardiomyocytes derived from induced pluripotent stem cells, can be used, thereby providing an ideal multi-level, cross-species platform to dissect sarcomeric function in cardiomyopathies. Here, we will review the myofibril function technique, and discuss alterations in myofibril mechanics, which are known to occur in sarcomeric genetic mutations linked to inherited HCM, DCM, and RCM, and describe the therapeutic potential for future target identification.

16.
Cond Med ; 2(4): 142-151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32457935

RESUMEN

Hypertrophic cardiomyopathy (HCM) is one of the most commonly inherited cardiac disorders that manifests with increased ventricular wall thickening, cardiomyocyte hypertrophy, disarrayed myofibers and interstitial fibrosis. The major pathophysiological features include, diastolic dysfunction, obstruction of the left ventricular outflow tract and cardiac arrhythmias. Mutations in genes that encode mostly for sarcomeric proteins have been associated with HCM but, despite the abundant research conducted to decipher the molecular mechanisms underlying the disease, it remains unclear as to how a primary defect in the sarcomere could lead to secondary phenotypes such as cellular hypertrophy. Mounting evidence suggests energy deficiency could be an important contributor of disease pathogenesis as well. Various animal models of HCM have been generated for gaining deeper insight into disease pathogenesis, however species variation between animals and humans, as well as the limited availability of human myocardial samples, has encouraged researchers to seek alternative 'humanized' models. Using induced pluripotent stem cells (iPSCs), human cardiomyocytes (CMs) have been generated from patients with HCM for investigating disease mechanisms. While these HCM-iPSC models demonstrate most of the phenotypic traits, it is important to ascertain if they recapitulate all pathophysiological features, especially that of energy deficiency. In this review we discuss the currently established HCM-iPSC models with emphasis on altered energetics.

17.
J Cell Physiol ; 215(1): 161-71, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18022818

RESUMEN

We previously reported that 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor (AhR) agonist, inhibits the proliferation of human umbilical vascular endothelial cells (HUVECs; Juan et al., 2006, Eur J Pharmacol 530: 1-8). Herein, pretreatment of HUVECs with p21 or p27 small interfering (si)RNA reduced 3MC-induced elimination of [(3)H]thymidine incorporation, demonstrating their essential roles in the antiproliferation of HUVECs. The molecular mechanisms of p21 and p27 involved in the antiproliferative effects of 3MC were elucidated in this study. 3MC time- and concentration-dependently increased p21 and p27 levels, and decreased the protein level of CDK2 with no apparent alteration of p53. Interestingly, 3MC-mediated p21 and p27 inductions were eliminated by resveratrol, an AhR antagonist, suggesting their AhR dependency, further confirmed by AhR siRNA. Among the relevant pathways, p38MAPK activation sustained the levels of p21 and p27 induced by 3MC, which was eliminated by AhR antagonists and N-acetylcysteine (NAC), an antioxidant. 3MC concentration-dependently enhanced not only the consensus dioxin-responsive element (DRE)-driven luciferase activity, but also the binding activity of the AhR to the putative DRE derived from the p21 and p27 promoters. A deletion of the DRE (-285/-270) in p21 (-2,300/+8) only partially alleviated the 3MC-induced luciferase activity unless NAC was added, suggesting that there may be a DRE-independent mechanism associated with oxidative stress. However, a deletion of the DRE (-660/-645) in p27 (-1,358/-100) almost completely abrogated the activation. Our study demonstrated that both the functional DRE and the phosphorylation of p38MAPK are essential for the induction of p21 and p27, resulting in the antiproliferative action of 3MC in HUVECs.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Metilcolantreno/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Cordón Umbilical/citología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Luciferasas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Elementos de Respuesta , Resveratrol , Eliminación de Secuencia , Estilbenos/farmacología , Factores de Tiempo , Tritio/metabolismo , Cordón Umbilical/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
18.
JCI Insight ; 3(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089714

RESUMEN

Little is known about the biological function of histone deacetylase 11 (HDAC11), which is the lone class IV HDAC. Here, we demonstrate that deletion of HDAC11 in mice stimulates brown adipose tissue (BAT) formation and beiging of white adipose tissue (WAT). Consequently, HDAC11-deficient mice exhibit enhanced thermogenic potential and, in response to high-fat feeding, attenuated obesity, improved insulin sensitivity, and reduced hepatic steatosis. Ex vivo and cell-based assays revealed that HDAC11 catalytic activity suppresses the BAT transcriptional program, in both the basal state and in response to ß-adrenergic receptor signaling, through a mechanism that is dependent on physical association with BRD2, a bromodomain and extraterminal (BET) acetyl-histone-binding protein. These findings define an epigenetic pathway for the regulation of energy homeostasis and suggest the potential for HDAC11-selective inhibitors for the treatment of obesity and diabetes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Hígado Graso/patología , Histona Desacetilasas/metabolismo , Obesidad/patología , Termogénesis/genética , Factores de Transcripción/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Epigénesis Genética/fisiología , Hígado Graso/genética , Femenino , Regulación de la Expresión Génica/fisiología , Histona Desacetilasas/genética , Humanos , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética
19.
Cell Signal ; 28(8): 1015-24, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27185186

RESUMEN

The mechanotransduction signaling pathways initiated in heart muscle by increased mechanical loading are known to lead to long-term transcriptional changes and hypertrophy, but the rapid events for adaptation at the sarcomeric level are not fully understood. The goal of this study was to test the hypothesis that actin filament assembly during cardiomyocyte growth is regulated by post-translational modifications (PTMs) of CapZß1. In rapidly hypertrophying neonatal rat ventricular myocytes (NRVMs) stimulated by phenylephrine (PE), two-dimensional gel electrophoresis (2DGE) of CapZß1 revealed a shift toward more negative charge. Consistent with this, mass spectrometry identified CapZß1 phosphorylation on serine-204 and acetylation on lysine-199, two residues which are near the actin binding surface of CapZß1. Ectopic expression of dominant negative PKCɛ (dnPKCɛ) in NRVMs blunted the PE-induced increase in CapZ dynamics, as evidenced by the kinetic constant (Kfrap) of fluorescence recovery after photobleaching (FRAP), and concomitantly reduced phosphorylation and acetylation of CapZß1. Furthermore, inhibition of class I histone deacetylases (HDACs) increased lysine-199 acetylation on CapZß1, which increased Kfrap of CapZ and stimulated actin dynamics. Finally, we show that PE treatment of NRVMs results in decreased binding of HDAC3 to myofibrils, suggesting a signal-dependent mechanism for the regulation of sarcomere-associated CapZß1 acetylation. Taken together, this dual regulation through phosphorylation and acetylation of CapZß1 provides a novel model for the regulation of myofibril growth during cardiac hypertrophy.


Asunto(s)
Proteína CapZ/metabolismo , Cardiomegalia/metabolismo , Miofibrillas/metabolismo , Acetilación/efectos de los fármacos , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteína CapZ/química , Cardiomegalia/patología , Tamaño de la Célula/efectos de los fármacos , Ventrículos Cardíacos/patología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miofibrillas/efectos de los fármacos , Fenilefrina/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C-epsilon/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas Sprague-Dawley , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo
20.
Naunyn Schmiedebergs Arch Pharmacol ; 388(1): 19-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25164962

RESUMEN

Abnormalities in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway are commonly observed in human cancers and contribute to chemotherapy resistance. Combination therapy, involving the use of molecular targeted agents and traditional cytotoxic drugs, may represent a promising strategy to lower resistance and enhance cytotoxicity. Here, we demonstrate the efficacy of an Akt inhibitor, MK-2206, in increasing the cytotoxic effect of either paclitaxel (Taxol) or cisplatin against the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Sequential treatment of Taxol or cisplatin, followed by MK-2206, induced a synergistic inhibition of cell proliferation and effectively promoted cell death, either by inhibiting the phosphorylation of Akt and its downstream effectors 4E-BP1 and p70S6K in SKOV3 cells or by restoring p53 levels, which were downregulated after Taxol or cisplatin treatment, in ES2 cells. Combination treatment also downregulated the pro-survival protein Bcl-2 in both SKOV3 and ES2 cells, which may have contributed to cell death. In addition, we discovered that Taxol/MK-2206 or cisplatin/MK-2206 combination treatment resulted in significant enhancement of intracellular reactive oxygen species (ROS) induced by MK-2206, in both SKOV3 and ES2 cells; however, MK-2206-induced growth inhibition was reversed by a ROS scavenger only in ES2 cells. MK-2206 also suppressed DNA repair, particularly in SKOV3 cells. Taken together, our results demonstrate that the Akt inhibitor MK-2206 enhances the efficacy of cytotoxic agents in both Akt-active and Akt-inactive ovarian cancer cells but through different mechanisms.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Paclitaxel/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA