RESUMEN
Effective management of glomerular kidney disease, one of the main categories of chronic kidney disease (CKD), requires accurate diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for the assessment of specific aspects of glomerular diseases have been reported in the literature. Though, the vast majority of these have not been implemented in clinical practice or are not available on a global scale due to limited access, missing medical infrastructure, or economical as well as political reasons. The aim of this review is to compile all currently available information on the diagnostic, prognostic, and predictive biomarkers currently available for the management of glomerular diseases, and provide guidance on the application of these biomarkers. As a result of the compiled evidence for the different biomarkers available, we present a decision tree for a non-invasive, biomarker-guided diagnostic path. The data currently available demonstrate that for the large majority of patients with glomerular diseases, valid biomarkers are available. However, despite the obvious disadvantages of kidney biopsy, being invasive and not applicable for monitoring, especially in the context of rare CKD etiologies, kidney biopsy still cannot be replaced by non-invasive strategies.
Asunto(s)
Riñón , Insuficiencia Renal Crónica , Humanos , Progresión de la Enfermedad , Riñón/patología , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/patología , Glomérulos Renales/patología , Biomarcadores , Tasa de Filtración GlomerularRESUMEN
Effective management of chronic kidney disease (CKD), a major health problem worldwide, requires accurate and timely diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for evaluating specific aspects of CKD have been proposed in the literature, many of which are based on a small number of samples. Based on the evidence presented in relevant studies, a comprehensive overview of the different biomarkers applicable for clinical implementation is lacking. This review aims to compile information on the non-invasive diagnostic, prognostic, and predictive biomarkers currently available for the management of CKD and provide guidance on the application of these biomarkers. We specifically focus on biomarkers that have demonstrated added value in prospective studies or those based on prospectively collected samples including at least 100 subjects. Published data demonstrate that several valid non-invasive biomarkers of potential value in the management of CKD are currently available.
Asunto(s)
Insuficiencia Renal Crónica , Humanos , Estudios Prospectivos , Biomarcadores , Insuficiencia Renal Crónica/diagnóstico , Fibrosis , RiñónRESUMEN
Chronic kidney diseases affect a substantial percentage of the adult population worldwide. This observation emphasizes the need for novel insights into the molecular mechanisms that control the onset and progression of renal diseases. Recent advances in genomics have uncovered a previously unanticipated link between the non-coding genome and human kidney diseases. Here we screened and analysed long non-coding RNAs (lncRNAs) previously identified in mouse kidneys by genome-wide transcriptomic analysis, for conservation in humans and differential expression in renal tissue from healthy and diseased individuals. Our data suggest that LINC01187 is strongly down-regulated in human kidney tissues of patients with diabetic nephropathy and rapidly progressive glomerulonephritis, as well as in murine models of kidney diseases, including unilateral ureteral obstruction, nephrotoxic serum-induced glomerulonephritis and ischemia/reperfusion. Interestingly, LINC01187 overexpression in human kidney cells in vitro inhibits cell death indicating an anti-apoptotic function. Collectively, these data suggest a negative association of LINC01187 expression with renal diseases implying a potential protective role.
Asunto(s)
Nefropatías Diabéticas , Glomerulonefritis , ARN Largo no Codificante , Animales , Humanos , Ratones , Nefropatías Diabéticas/metabolismo , Regulación hacia Abajo/genética , Glomerulonefritis/metabolismo , Riñón/metabolismo , ARN Largo no Codificante/metabolismoRESUMEN
Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Nefropatías Diabéticas/patología , Filaminas/metabolismo , Adhesiones Focales/patología , Glomérulos Renales/patología , Podocitos/patología , Estrés Mecánico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Adhesión Celular , Movimiento Celular , Nefropatías Diabéticas/metabolismo , Adhesiones Focales/metabolismo , Humanos , Glomérulos Renales/metabolismo , Ratones , Persona de Mediana Edad , Podocitos/metabolismo , Estudios Retrospectivos , Transducción de SeñalRESUMEN
BACKGROUND: Injury to kidney podocytes often results in chronic glomerular disease and consecutive nephron malfunction. For most glomerular diseases, targeted therapies are lacking. Thus, it is important to identify novel signaling pathways contributing to glomerular disease. Neurotrophic tyrosine kinase receptor 3 (TrkC) is expressed in podocytes and the protein transmits signals to the podocyte actin cytoskeleton. METHODS: Nephron-specific TrkC knockout (TrkC-KO) and nephron-specific TrkC-overexpressing (TrkC-OE) mice were generated to dissect the role of TrkC in nephron development and maintenance. RESULTS: Both TrkC-KO and TrkC-OE mice exhibited enlarged glomeruli, mesangial proliferation, basement membrane thickening, albuminuria, podocyte loss, and aspects of FSGS during aging. Igf1 receptor (Igf1R)-associated gene expression was dysregulated in TrkC-KO mouse glomeruli. Phosphoproteins associated with insulin, erb-b2 receptor tyrosine kinase (Erbb), and Toll-like receptor signaling were enriched in lysates of podocytes treated with the TrkC ligand neurotrophin-3 (Nt-3). Activation of TrkC by Nt-3 resulted in phosphorylation of the Igf1R on activating tyrosine residues in podocytes. Igf1R phosphorylation was increased in TrkC-OE mouse kidneys while it was decreased in TrkC-KO kidneys. Furthermore, TrkC expression was elevated in glomerular tissue of patients with diabetic kidney disease compared with control glomerular tissue. CONCLUSIONS: Our results show that TrkC is essential for maintaining glomerular integrity. Furthermore, TrkC modulates Igf-related signaling in podocytes.
Asunto(s)
Enfermedades Renales/metabolismo , Nefronas/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor trkC/metabolismo , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Humanos , Enfermedades Renales/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/metabolismo , Podocitos/metabolismo , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND/AIMS: Podocyte differentiation is essential for proper blood filtration in the kidney. It is well known that transcription factors play an essential role to maintain the differentiation of podocytes. The present study is focused on the basic helix-loop-helix (bHLH) transcription factor Tcf21 (Pod1) which is essential for the development of podocytes in vivo. Since parietal epithelial cells (PECs) are still under debate to be progenitor cells which can differentiate into podocytes, we wanted to find out whether the expression of Tcf21 induces a transition of PECs into podocytes. METHODS: We transfected PECs with Tcf21-GFP and analyzed the expression of PEC- and podocyte-specific markers. Furthermore, we performed ChIP-Seq analysis to identify new putative interaction partners and target genes of Tcf21. RESULTS: By gene arrays analysis, we found that podocytes express high levels of Tcf21 in vivo in contrast to cultured podocytes and parietal epithelial cells (PECs) in vitro. After the expression of Tcf21 in PECs, we observed a downregulation of specific PEC markers like caveolin1, ß-catenin and Pax2. Additionally, we found that the upregulation of Tcf21 induced multi-lobulation of cell nuclei, budding and a formation of micronuclei (MBM). Furthermore, a high number of PECs showed a tetraploid set of chromosomes. By qRT-PCR and Western blot analysis, we revealed that the transcription factor YY1 is downregulated by Tcf21. Interestingly, co-expression of YY1 and Tcf21 rescues MBM and reduced tetraploidy. By ChIP-Seq analysis, we identified a genome-wide Tcf21-binding site (CAGCTG), which matched the CANNTG sequence, a common E-box binding motif used by bHLH transcription factors. Using this technique, we identified additional Tcf21 targets genes that are involved in the regulation of the cell cycle (e.g. Mdm2, Cdc45, Cyclin D1, Cyclin D2), on the stability of microtubules (e.g. Mapt) as well as chromosome segregation. CONCLUSION: Taken together, we demonstrate that Tcf21 inhibits the expression of PEC-specific markers and of the transcription factor YY1, induces MBM as well as regulates the cell cycle suggesting that Tcf21 might be important for PEC differentiation into podocyte-like cells.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Epiteliales/citología , Podocitos/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Transdiferenciación Celular , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Podocitos/metabolismo , TransfecciónRESUMEN
Chronic kidney diseases (CKD) are a major health problem affecting approximately 10% of the world's population and posing increasing challenges to the healthcare system. While CKD encompasses a broad spectrum of pathological processes and diverse etiologies, the classification of kidney disease is currently based on clinical findings or histopathological categorizations. This descriptive classification is agnostic towards the underlying disease mechanisms and has limited progress towards the ability to predict disease prognosis and treatment responses. To gain better insight into the complex and heterogeneous disease pathophysiology of CKD, a systems biology approach can be transformative. Rather than examining one factor or pathway at a time, as in the reductionist approach, with this strategy a broad spectrum of information is integrated, including comprehensive multi-omics data, clinical phenotypic information, and clinicopathological parameters. In recent years, rapid advances in mathematical, statistical, computational, and artificial intelligence methods enable the mapping of diverse big data sets. This holistic approach aims to identify the molecular basis of CKD subtypes as well as individual determinants of disease manifestation in a given patient. The emerging mechanism-based patient stratification and disease classification will lead to improved prognostic and predictive diagnostics and the discovery of novel molecular disease-specific therapies.
Asunto(s)
Nefrología/métodos , Insuficiencia Renal Crónica/patología , Animales , Humanos , PronósticoRESUMEN
A growing body of evidence suggests that low nephron numbers at birth can increase the risk of chronic kidney disease or hypertension later in life. Environmental stressors, such as maternal malnutrition, medication and smoking, can influence renal size at birth. Using metanephric organ cultures to model single-variable environmental conditions, models of maternal disease were evaluated for patterns of developmental impairment. While hyperthermia had limited effects on renal development, fetal iron deficiency was associated with severe impairment of renal growth and nephrogenesis with an all-proximal phenotype. Culturing kidney explants under high glucose conditions led to cellular and transcriptomic changes resembling human diabetic nephropathy. Short-term high glucose culture conditions were sufficient for long-term alterations in DNA methylation-associated epigenetic memory. Finally, the role of epigenetic modifiers in renal development was tested using a small compound library. Among the selected epigenetic inhibitors, various compounds elicited an effect on renal growth, such as HDAC (entinostat, TH39), histone demethylase (deferasirox, deferoxamine) and histone methyltransferase (cyproheptadine) inhibitors. Thus, metanephric organ cultures provide a valuable system for studying metabolic conditions and a tool for screening for epigenetic modifiers in renal development.
Asunto(s)
Nefropatías Diabéticas/genética , Ambiente , Epigénesis Genética , Glucosa/toxicidad , Riñón/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Metilación de ADN , Femenino , Humanos , Deficiencias de Hierro , Riñón/efectos de los fármacos , Ratones , Técnicas de Cultivo de Órganos/métodos , Embarazo , TranscriptomaRESUMEN
Hypertension is one of the central causes of kidney damage. In the past it was shown that glomerular hypertension leads to morphologic changes of podocytes and effacement and is responsible for detachment of these postmitotic cells. Because we have shown that podocytes are mechanosensitive and respond to mechanical stress by reorganization of the actin cytoskeleton in vitro, we look for mechanotransducers in podocytes. In this study, we demonstrate that the extracellular matrix protein fibronectin (Fn1) might be a potential candidate. The present study shows that Fn1 is essential for the attachment of podocytes during mechanical stress. By real-time quantitative PCR as well as by liquid chromatography-mass spectrometry, we found a significant up-regulation of Fn1 caused by mechanical stretch (3 d, 0.5 Hz, and 5% extension). To study the role of Fn1 in cultured podocytes under mechanical stress, Fn1 was knocked down (Fn1 KD) by a specific small interfering RNA. Additionally, we established a Fn1 knockout (KO) podocyte cell line (Fn1 KO) by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). During mechanical stress, a significant loss of podocytes (>80%) was observed in Fn1 KD as well as Fn1 KO podocytes compared with control cells. Furthermore, Fn1 KO podocytes showed a significant down-regulation of the focal adhesion proteins talin, vinculin, and paxillin and a reduced cell spreading, indicating an important role of Fn1 in adhesion. Analyses of kidney sections from patients with diabetic nephropathy have shown a significant up-regulation of FN1 in contrast to control biopsies. In summary, we show that Fn1 plays an important role in the adaptation of podocytes to mechanical stress.-Kliewe, F., Kaling, S., Lötzsch, H., Artelt, N., Schindler, M., Rogge, H., Schröder, S., Scharf, C., Amann, K., Daniel, C., Lindenmeyer, M. T., Cohen, C. D., Endlich, K., Endlich, N. Fibronectin is up-regulated in podocytes by mechanical stress.
Asunto(s)
Fibronectinas/metabolismo , Podocitos/fisiología , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Adhesión Celular/fisiología , Regulación hacia Abajo , Fibronectinas/genética , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Glomérulos Renales/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia ArribaRESUMEN
BACKGROUND: Glomerulosclerosis and tubulointerstitial fibrosis are hallmarks of chronic kidney injury leading to end-stage renal disease. Inflammatory mechanisms contribute to glomerular and interstitial scarring, including chemokine-mediated recruitment of leucocytes. In particular, accumulation of C-C chemokine receptor type 2 (CCR2)-expressing macrophages promotes renal injury and fibrotic remodelling in diseases like glomerulonephritis and diabetic nephropathy. The functional role of CCR2 in the initiation and progression of primary glomerulosclerosis induced by podocyte injury remains to be characterized. METHODS: We analysed glomerular expression of CCR2 and its chemokine ligand C-C motif chemokine ligand 2 (CCL2) in human focal segmental glomerulosclerosis (FSGS). Additionally, CCL2 expression was determined in stimulated murine glomeruli and glomerular cells in vitro. To explore pro-inflammatory and profibrotic functions of CCR2 we induced adriamycin nephropathy, a murine model of FSGS, in BALB/c wild-type and Ccr2-deficient mice. RESULTS: Glomerular expression of CCR2 and CCL2 significantly increased in human FSGS. In adriamycin-induced FSGS, progressive glomerular scarring and reduced glomerular nephrin expression was paralleled by induced glomerular expression of CCL2. Adriamycin exposure stimulated secretion of CCL2 and tumour necrosis factor-α (TNF) in isolated glomeruli and mesangial cells and CCL2 in parietal epithelial cells. In addition, TNF induced CCL2 expression in all glomerular cell populations, most prominently in podocytes. In vivo, Ccr2-deficient mice with adriamycin nephropathy showed reduced injury, macrophage and fibrocyte infiltration and inflammation in glomeruli and the tubulointerstitium. Importantly, glomerulosclerosis and tubulointerstitial fibrosis were significantly ameliorated. CONCLUSIONS: Our data indicate that CCR2 is an important mediator of glomerular injury and progression of FSGS. CCR2- targeting therapies may represent a novel approach for its treatment.
Asunto(s)
Fibrosis/etiología , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Inflamación/etiología , Riñón/patología , Receptores CCR2/fisiología , Animales , Quimiocinas/metabolismo , Fibrosis/patología , Inflamación/patología , Riñón/lesiones , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones NoqueadosRESUMEN
BACKGROUND: GATA3 is a dual-zinc finger transcription factor that regulates gene expression in many developing tissues. In the kidney, GATA3 is essential for ureteric bud branching, and mice without it fail to develop kidneys. In humans, autosomal dominant GATA3 mutations can cause renal aplasia as part of the hypoparathyroidism, renal dysplasia, deafness (HDR) syndrome that includes mesangioproliferative GN. This suggests that GATA3 may have a previously unrecognized role in glomerular development or injury. METHODS: To determine GATA3's role in glomerular development or injury, we assessed GATA3 expression in developing and mature kidneys from Gata3 heterozygous (+/-) knockout mice, as well as injured human and rodent kidneys. RESULTS: We show that GATA3 is expressed by FOXD1 lineage stromal progenitor cells, and a subset of these cells mature into mesangial cells (MCs) that continue to express GATA3 in adult kidneys. In mice, we uncover that GATA3 is essential for normal glomerular development, and mice with haploinsufficiency of Gata3 have too few MC precursors and glomerular abnormalities. Expression of GATA3 is maintained in MCs of adult kidneys and is markedly increased in rodent models of mesangioproliferative GN and in IgA nephropathy, suggesting that GATA3 plays a critical role in the maintenance of glomerular homeostasis. CONCLUSIONS: These results provide new insights on the role GATA3 plays in MC development and response to injury. It also shows that GATA3 may be a novel and robust nuclear marker for identifying MCs in tissue sections.
Asunto(s)
Factor de Transcripción GATA3/metabolismo , Glomerulonefritis/metabolismo , Glomérulos Renales/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/metabolismo , Factor de Transcripción GATA3/genética , Haploinsuficiencia , Humanos , Glomérulos Renales/anomalías , Glomérulos Renales/embriología , Glomérulos Renales/patología , Masculino , Células Mesangiales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Ratas , Ratas WistarRESUMEN
Tumor necrosis factor-α (TNF) is a cytokine mediating inflammatory kidney diseases such as immune complex glomerulonephritis. Its two receptors, TNFR1 and TNFR2, play distinct roles in this process, with TNFR2 strongly required for induction of disease. In contrast to soluble TNF (sTNF), transmembrane TNF robustly activates TNFR2. Thus, we examined the functional role of transmembrane TNF by inducing heterologous nephrotoxic serum nephritis in wild-type and transgenic TNFΔ1-9,K11E knock-in mice expressing transmembrane TNF but no sTNF (memTNF mice). Compared to wild-type, nephritis was exacerbated in memTNF mice on day 5, indicated by increased albuminuria, higher serum urea levels, and more pronounced glomerular deposits, together with higher numbers of dying and proliferating glomerular cells. This was associated with greater loss of glomerular endothelial cells, increased podocyte stress, and signs of augmented necroptosis in memTNF kidneys. Aggravation of nephritis was dependent on transmembrane TNF expression in parenchymal cells, but not leukocytes. Surprisingly, increased kidney injury was associated with reduced renal leukocyte infiltration in memTNF mice, which correlated with decreased renal mRNA expression of pro-inflammatory mediators. This effect was also present in isolated memTNF glomeruli stimulated with interleukin-1ß in vitro. Thus, uncleaved transmembrane TNF is an important mediator of renal tissue damage characterized by increased renal cell death and loss of glomerular endothelial cells in murine glomerulonephritis. In contrast, sTNF predominantly mediates renal leukocyte recruitment and inflammation. These findings highlight the importance of transmembrane TNF in inflammatory kidney disease as a possible therapeutic target.
Asunto(s)
Membrana Celular/metabolismo , Glomerulonefritis/patología , Glomérulos Renales/patología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis , Biopsia , Línea Celular , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/patología , Técnicas de Sustitución del Gen , Glomerulonefritis/inmunología , Humanos , Interleucina-1beta/inmunología , Glomérulos Renales/citología , Glomérulos Renales/inmunología , Leucocitos/inmunología , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
Planar cell polarity (PCP) pathways control the orientation and alignment of epithelial cells within tissues. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the normal differentiation of kidney glomeruli and tubules. Vangl2 has also been implicated in modifying the course of acquired glomerular disease, and here, we further explored how Vangl2 impacts on glomerular pathobiology in this context. Targeted genetic deletion of Vangl2 in mouse glomerular epithelial podocytes enhanced the severity of not only irreversible accelerated nephrotoxic nephritis but also lipopolysaccharide-induced reversible glomerular damage. In each proteinuric model, genetic deletion of Vangl2 in podocytes was associated with an increased ratio of active-MMP9 to inactive MMP9, an enzyme involved in tissue remodelling. In addition, by interrogating microarray data from two cohorts of renal patients, we report increased VANGL2 transcript levels in the glomeruli of individuals with focal segmental glomerulosclerosis, suggesting that the molecule may also be involved in certain human glomerular diseases. These observations support the conclusion that Vangl2 modulates glomerular injury, at least in part by acting as a brake on MMP9, a potentially harmful endogenous enzyme. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Asunto(s)
Polaridad Celular , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glomérulos Renales/metabolismo , Proteínas de la Membrana/metabolismo , Nefrosis Lipoidea/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Podocitos/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Nefrosis Lipoidea/genética , Nefrosis Lipoidea/patología , Nefrosis Lipoidea/fisiopatología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Podocitos/patología , Transducción de Señal , Adulto JovenRESUMEN
Dedifferentiation and loss of podocytes are the major cause of chronic kidney disease. Dach1, a transcription factor that is essential for cell fate, was found in genome-wide association studies to be associated with the glomerular filtration rate. We found that podocytes express high levels of Dach1 in vivo and to a much lower extent in vitro. Parietal epithelial cells (PECs) that are still under debate to be a type of progenitor cell for podocytes expressed Dach1 only at low levels. The transfection of PECs with a plasmid encoding for Dach1 induced the expression of synaptopodin, a podocyte-specific protein, demonstrated by immunocytochemistry and Western blot. Furthermore, synaptopodin was located along actin fibres in a punctate pattern in Dach1-expressing PECs comparable with differentiated podocytes. Moreover, dedifferentiating podocytes of isolated glomeruli showed a significant reduction in the expression of Dach1 together with synaptopodin after 9 days in cell culture. To study the role of Dach1 in vivo, we used the zebrafish larva as an animal model. Knockdown of the zebrafish ortholog Dachd by morpholino injection into fertilized eggs resulted in a severe renal phenotype. The glomeruli of the zebrafish larvae showed morphological changes of the glomerulus accompanied by down-regulation of nephrin and leakage of the filtration barrier. Interestingly, glomeruli of biopsies from patients suffering from diabetic nephropathy showed also a significant reduction of Dach1 and synaptopodin in contrast to control biopsies. Taken together, Dach1 is a transcription factor that is important for podocyte differentiation and proper kidney function.
Asunto(s)
Podocitos/metabolismo , Factores de Transcripción/metabolismo , Actinas/metabolismo , Adulto , Anciano , Animales , Biomarcadores/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Regulación hacia Abajo/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Humanos , Larva/ultraestructura , Masculino , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Podocitos/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba/genética , Pez Cebra , Proteínas de Pez CebraRESUMEN
Podocyte loss and changes to the complex morphology are major causes of chronic kidney disease (CKD). As the incidence is continuously increasing over the last decades without sufficient treatment, it is important to find predicting biomarkers. Therefore, we measured urinary mRNA levels of podocyte genes NPHS1, NPHS2, PODXL and BDNF, KIM-1, CTSL by qRT-PCR of 120 CKD patients. We showed a strong correlation between BDNF and the kidney injury marker KIM-1, which were also correlated with NPHS1, suggesting podocytes as a contributing source. In human biopsies, BDNF was localized in the cell body and major processes of podocytes. In glomeruli of diabetic nephropathy patients, we found a strong BDNF signal in the remaining podocytes. An inhibition of the BDNF receptor TrkB resulted in enhanced podocyte dedifferentiation. The knockdown of the orthologue resulted in pericardial oedema formation and lowered viability of zebrafish larvae. We found an enlarged Bowman's space, dilated glomerular capillaries, podocyte loss and an impaired glomerular filtration. We demonstrated that BDNF is essential for glomerular development, morphology and function and the expression of BDNF and KIM-1 is highly correlated in urine cells of CKD patients. Therefore, BDNF mRNA in urine cells could serve as a potential CKD biomarker.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Nefropatías Diabéticas/genética , Receptor Celular 1 del Virus de la Hepatitis A/genética , Glicoproteínas de Membrana/genética , Receptor trkB/genética , Insuficiencia Renal Crónica/genética , Anciano , Animales , Factor Neurotrófico Derivado del Encéfalo/orina , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Humanos , Riñón/metabolismo , Riñón/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Glicoproteínas de Membrana/orina , Persona de Mediana Edad , Podocitos/metabolismo , Podocitos/patología , Proteinuria/genética , Proteinuria/patología , ARN Mensajero/genética , Receptor trkB/orina , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/orina , Pez Cebra/genéticaAsunto(s)
Betacoronavirus/fisiología , Riñón/virología , Carga Viral , Tropismo Viral , Anciano , Anciano de 80 o más Años , Autopsia , Betacoronavirus/aislamiento & purificación , Encéfalo/virología , COVID-19 , Infecciones por Coronavirus , Femenino , Corazón/virología , Humanos , Hígado/virología , Pulmón/virología , Masculino , Persona de Mediana Edad , Pandemias , Faringe/virología , Neumonía Viral , SARS-CoV-2RESUMEN
OBJECTIVES: To characterise renal tissue metabolic pathway gene expression in different forms of glomerulonephritis. METHODS: Patients with nephrotic syndrome (NS), antineutrophil cytoplasmic antibody-associated vasculitis (AAV), systemic lupus erythematosus (SLE) and healthy living donors (LD) were studied. Clinically indicated renal biopsies were obtained at time of diagnosis and microdissected into glomerular and tubulointerstitial compartments. Microarray-derived differential gene expression of 88 genes representing critical enzymes of metabolic pathways and 25 genes related to immune cell markers was compared between disease groups. Correlation analyses measured relationships between metabolic pathways, kidney function and cytokine production. RESULTS: Reduced steady state levels of mRNA species were enriched in pathways of oxidative phosphorylation and increased in the pentose phosphate pathway (PPP) with maximal perturbation in AAV and SLE followed by NS, and least in LD. Transcript regulation was isozymes specific with robust regulation in hexokinases, enolases and glucose transporters. Intercorrelation networks were observed between enzymes of the PPP (eg, transketolase) and macrophage markers (eg, CD68) (r=0.49, p<0.01). Increased PPP transcript levels were associated with reduced glomerular filtration rate in the glomerular (r=-0.49, p<0.01) and tubulointerstitial (r=-0.41, p<0.01) compartments. PPP expression and tumour necrosis factor activation were tightly co-expressed (r=0.70, p<0.01). CONCLUSION: This study demonstrated concordant alterations of the renal transcriptome consistent with metabolic reprogramming across different forms of glomerulonephritis. Activation of the PPP was tightly linked with intrarenal macrophage marker expression, reduced kidney function and increased production of cytokines. Modulation of glucose metabolism may offer novel immune-modulatory therapeutic approaches in rare kidney diseases.
Asunto(s)
Glomerulonefritis/metabolismo , Redes y Vías Metabólicas/genética , Adulto , Anciano , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/genética , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/metabolismo , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/patología , Biopsia , Citocinas/biosíntesis , Femenino , Regulación de la Expresión Génica , Glomerulonefritis/genética , Glomerulonefritis/patología , Humanos , Isoenzimas/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Masculino , Redes y Vías Metabólicas/inmunología , Persona de Mediana Edad , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Vía de Pentosa Fosfato/genética , ARN Mensajero/genética , Transcriptoma , Adulto JovenRESUMEN
Chronic kidney disease has severe impacts on the patient and represents a major burden to the health care systems worldwide. Despite an increased knowledge of pathophysiological processes involved in kidney diseases, the progress in defining novel treatment strategies has been limited. One reason is the descriptive disease categorization used in nephrology based on clinical findings or histopathological categories irrespective of potential different molecular disease mechanisms. To accelerate progress toward a targeted treatment, a definition of human disease extending from phenotypic disease classification to mechanism-based disease definitions is needed. In recent years, we have witnessed a major transition in biomedical research from a single gene research to an information rich and collaborative science. Tissue-based analysis in renal disease allows to link structure to molecular function. In our review, we introduce the concept of precision medicine in nephrology, describe several large cohort studies established for molecular analysis of kidney diseases, and highlight examples of renal biopsy-driven target identification by integrative systems biology approaches. Furthermore, we give an outlook on how the new disease definitions can be used for patient stratification in clinical trial design. Finally, we introduce the concept of an informational commons of renal precision medicine for joint analyses of large-scale data sets in renal failure.
Asunto(s)
Glomerulonefritis/patología , Riñón/patología , Terapia Molecular Dirigida/métodos , Bancos de Tejidos/organización & administración , Ensayos Clínicos como Asunto/normas , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Glomerulonefritis/terapia , Humanos , Riñón/metabolismo , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Terapia Molecular Dirigida/normas , Bancos de Tejidos/normasRESUMEN
A crucial step in the cellular adaptation to oxygen deficiency is the binding of hypoxia-inducible factors (HIFs) to hypoxia response elements (HREs) of oxygen-regulated genes. Genome-wide HIF-1α/2α/ß DNA-binding studies revealed that the majority of HREs reside distant to the promoter regions, but the function of these distal HREs has only been marginally studied in the genomic context. We used chromatin immunoprecipitation (ChIP), gene editing (TALEN) and chromosome conformation capture (3C) to localize and functionally characterize a 82 kb upstream HRE that solely drives oxygen-regulated expression of the newly identified HIF target gene PAG1. PAG1, a transmembrane adaptor protein involved in Src signalling, was hypoxically induced in various cell lines and mouse tissues. ChIP and reporter gene assays demonstrated that the -82 kb HRE regulates PAG1, but not an equally distant gene further upstream, by direct interaction with HIF. Ablation of the consensus HRE motif abolished the hypoxic induction of PAG1 but not general oxygen signalling. 3C assays revealed that the -82 kb HRE physically associates with the PAG1 promoter region, independent of HIF-DNA interaction. These results demonstrate a constitutive interaction between the -82 kb HRE and the PAG1 promoter, suggesting a physiologically important rapid response to hypoxia.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cromatina/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/genética , Elementos de Respuesta , Activación Transcripcional , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Hipoxia de la Célula , Línea Celular , Cromatina/química , Células HeLa , Humanos , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Transducción de Señal , Familia-src Quinasas/metabolismoRESUMEN
Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN.