Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Rev Cancer ; 5(10): 761-72, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16175177

RESUMEN

Standing watch over the proteome, molecular chaperones are an ancient and evolutionarily conserved class of proteins that guide the normal folding, intracellular disposition and proteolytic turnover of many of the key regulators of cell growth, differentiation and survival. This essential guardian function is subverted during oncogenesis to allow malignant transformation and to facilitate rapid somatic evolution. Pharmacologically 'bribing' the essential guard duty of the chaperone HSP90 (heat-shock protein of 90 kDa) seems to offer a unique anticancer strategy of considerable promise.


Asunto(s)
Proteínas HSP90 de Choque Térmico/fisiología , Chaperonas Moleculares/fisiología , Neoplasias/etiología , Animales , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Humanos , Neoplasias/tratamiento farmacológico
2.
Nature ; 435(7043): 765-72, 2005 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-15944694

RESUMEN

Self-perpetuating changes in the conformations of amyloidogenic proteins play vital roles in normal biology and disease. Despite intense research, the architecture and conformational conversion of amyloids remain poorly understood. Amyloid conformers of Sup35 are the molecular embodiment of the yeast prion known as [PSI], which produces heritable changes in phenotype through self-perpetuating changes in protein folding. Here we determine the nature of Sup35's cooperatively folded amyloid core, and use this information to investigate central questions in prion biology. Specific segments of the amyloid core form intermolecular contacts in a 'Head-to-Head', 'Tail-to-Tail' fashion, but the 'Central Core' is sequestered through intramolecular contacts. The Head acquires productive interactions first, and these nucleate assembly. Variations in the length of the amyloid core and the nature of intermolecular interfaces form the structural basis of distinct prion 'strains', which produce variant phenotypes in vivo. These findings resolve several problems in yeast prion biology and have broad implications for other amyloids.


Asunto(s)
Priones/química , Priones/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Cisteína/genética , Cisteína/metabolismo , Variación Genética/genética , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Terminación de Péptidos , Fenotipo , Priones/clasificación , Priones/metabolismo , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
3.
PLoS Comput Biol ; 5(3): e1000333, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19325876

RESUMEN

Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator) in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s), there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid. BETASCAN is publicly accessible on the Web at http://betascan.csail.mit.edu.


Asunto(s)
Algoritmos , Péptidos beta-Amiloides/química , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Secuencia de Aminoácidos , Simulación por Computador , Interpretación Estadística de Datos , Datos de Secuencia Molecular
4.
Nature ; 431(7005): 184-7, 2004 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15311209

RESUMEN

Phenotypic plasticity and the exposure of hidden genetic variation both affect the survival and evolution of new traits, but their contributing molecular mechanisms are largely unknown. A single factor, the yeast prion [PSI(+)], may exert a profound effect on both. [PSI(+)] is a conserved, protein-based genetic element that is formed by a change in the conformation and function of the translation termination factor Sup35p, and is transmitted from mother to progeny. Curing cells of [PSI(+)] alters their survival in different growth conditions and produces a spectrum of phenotypes in different genetic backgrounds. Here we show, by examining three plausible explanations for this phenotypic diversity, that all traits tested involved [PSI(+)]-mediated read-through of nonsense codons. Notably, the phenotypes analysed were genetically complex, and genetic re-assortment frequently converted [PSI(+)]-dependent phenotypes to stable traits that persisted in the absence of [PSI(+)]. Thus, [PSI(+)] provides a temporary survival advantage under diverse conditions, increasing the likelihood that new traits will become fixed by subsequent genetic change. As an epigenetic mechanism that globally affects the relationship between genotype and phenotype, [PSI(+)] expands the conceptual framework for phenotypic plasticity, provides a one-step mechanism for the acquisition of complex traits and affords a route to the genetic assimilation of initially transient epigenetic traits.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Variación Genética/genética , Priones/genética , Priones/metabolismo , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Evolución Biológica , División Celular , Codón sin Sentido/genética , Cruzamientos Genéticos , Genotipo , Modelos Genéticos , Factores de Terminación de Péptidos , Fenotipo , Priones/química , Conformación Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
5.
Nat Cell Biol ; 22(2): 151-158, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32015439

RESUMEN

Under proteotoxic stress, some cells survive whereas others die. The mechanisms governing this heterogeneity in cell fate remain unknown. Here we report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones1,2, is integral to cell-fate decisions underlying survival or death. During stress, HSF1 drives chaperone expression but also accumulates separately in nuclear stress bodies called foci3-6. Foci formation has been regarded as a marker of cells actively upregulating chaperones3,6-10. Using multiplexed tissue imaging, we observed HSF1 foci in human tumours. Paradoxically, their presence inversely correlated with chaperone expression. By live-cell microscopy and single-cell analysis, we found that foci dissolution rather than formation promoted HSF1 activity and cell survival. During prolonged stress, the biophysical properties of HSF1 foci changed; small, fluid condensates enlarged into indissoluble gel-like arrangements with immobilized HSF1. Chaperone gene induction was reduced in such cells, which were prone to apoptosis. Quantitative analysis suggests that survival under stress results from competition between concurrent but opposing mechanisms. Foci may serve as sensors that tune cytoprotective responses, balancing rapid transient responses and irreversible outcomes.


Asunto(s)
Adaptación Fisiológica/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción del Choque Térmico/genética , Proteínas de Choque Térmico/genética , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transición de Fase , Transducción de Señal , Análisis de la Célula Individual , Transcripción Genética
7.
Methods Enzymol ; 439: 339-51, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18374176

RESUMEN

Recent studies implicate a disruption in Rab-mediated protein trafficking as a possible contributing factor to neurodegeneration in Parkinson's disease (PD). Misfolding of the neuronal protein alpha-synuclein (asyn) is implicated in PD. Overexpression of asyn results in cell death in a wide variety of model systems, and in several organisms, including yeast, worms, flies, and rodent primary neurons, this toxicity is suppressed by the overproduction of Rab proteins. These and other findings suggest that asyn interferes with Rab function and provide new avenues for PD drug discovery. This chapter describes two assay formats that have been used successfully to identify small molecules that rescue asyn toxicity in yeast. The 96-well format monitors rescue by optical density and is suitable for screening thousands of compounds. A second format measures viable cells by reduction of the dye alamarBlue, a readout that is compatible with 96-, 384-, and 1536-well plates allowing the screening of large libraries (>100,000 compounds). A secondary assay to eliminate mechanistically undesirable hits is also described.


Asunto(s)
Saccharomyces cerevisiae/efectos de los fármacos , alfa-Sinucleína/toxicidad , Proteínas de Unión al GTP rab/toxicidad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Enfermedad de Parkinson/tratamiento farmacológico
8.
PLoS Genet ; 1(6): e80, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16429164

RESUMEN

Analyses of cellular processes in the yeast Saccharomyces cerevisiae rely primarily upon a small number of highly domesticated laboratory strains, leaving the extensive natural genetic diversity of the model organism largely unexplored and unexploited. We asked if this diversity could be used to enrich our understanding of basic biological processes. As a test case, we examined a simple trait: the utilization of di/tripeptides as nitrogen sources. The capacity to import small peptides is likely to be under opposing selective pressures (nutrient utilization versus toxin vulnerability) and may therefore be sculpted by diverse pathways and strategies. Hitherto, dipeptide utilization in S. cerevisiae was solely ascribed to the activity of a single protein, the Ptr2p transporter. Using high-throughput phenotyping and several genetically diverse strains, we identified previously unknown cellular activities that contribute to this trait. We find that the Dal5p allantoate/ureidosuccinate permease is also capable of facilitating di/tripeptide transport. Moreover, even in the absence of Dal5p and Ptr2p, an additional activity--almost certainly the periplasmic asparaginase II Asp3p--facilitates the utilization of dipeptides with C-terminal asparagine residues by a different strategy. Another, as-yet-unidentified activity enables the utilization of dipeptides with C-terminal arginine residues. The relative contributions of these activities to the utilization of di/tripeptides vary among the strains analyzed, as does the vulnerability of these strains to a toxic dipeptide. Only by sampling the genetic diversity of multiple strains were we able to uncover several previously unrecognized layers of complexity in this metabolic pathway. High-throughput phenotyping facilitates the rapid exploration of the molecular basis of biological complexity, allowing for future detailed investigation of the selective pressures that drive microbial evolution.


Asunto(s)
Variación Genética , Metabolismo , Dipéptidos/genética , Modelos Genéticos , Oligopéptidos/genética , Saccharomyces cerevisiae/genética
9.
J Mol Neurosci ; 23(1-2): 23-34, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15126689

RESUMEN

Parkinson's disease (PD) is a neurologic disorder resulting from the loss of dopaminergic neurons in the brain. Two lines of evidence suggest that the protein alpha-synuclein plays a role in the pathogenesis of PD: Fibrillar alpha-synuclein is a major component of Lewy bodies in diseased neurons, and two mutations in alpha-synuclein are linked to early-onset disease. Accordingly, the fibrillization of alpha-synuclein is proposed to contribute to neurodegeneration in PD. In this report, we provide evidence that oligomeric intermediates of the alpha-synuclein fibrillization pathway, termed protofibrils, might be neurotoxic. Analyses of protofibrillar alpha-synuclein by atomic force microscopy and electron microscopy indicate that the oligomers consist of spheres, chains, and rings. alpha-Synuclein protofibrils permeabilize synthetic vesicles and form pore-like assemblies on the surface of brain-derived vesicles. Dopamine reacts with alpha-synuclein to form a covalent adduct that slows the conversion of protofibrils to fibrils. This finding suggests that cytosolic dopamine in dopaminergic neurons promotes the accumulation of toxic alpha-synuclein protofibrils, which might explain why these neurons are most vulnerable to degeneration in PD. Finally, we note that aggregation of alpha-synuclein likely occurs via different mechanisms in the cell versus the test tube. For example, the binding of alpha-synuclein to cellular membranes might influence its self-assembly. To address this point, we have developed a yeast model that might enable the selection of random alpha-synuclein mutants with different membrane-binding affinities. These variants might be useful to test whether membrane binding by alpha-synuclein is necessary for neurodegeneration in transgenic animal models of PD.


Asunto(s)
Membrana Celular/metabolismo , Dopamina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Membrana Celular/genética , Humanos , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neurofibrillas/genética , Neurofibrillas/metabolismo , Neurofibrillas/patología , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Unión Proteica/genética , Sinucleínas , alfa-Sinucleína
11.
Artículo en Inglés | MEDLINE | ID: mdl-21900404

RESUMEN

Maintaining the proteome to preserve the health of an organism in the face of developmental changes, environmental insults, infectious diseases, and rigors of aging is a formidable task. The challenge is magnified by the inheritance of mutations that render individual proteins subject to misfolding and/or aggregation. Maintenance of the proteome requires the orchestration of protein synthesis, folding, degradation, and trafficking by highly conserved/deeply integrated cellular networks. In humans, no less than 2000 genes are involved. Stress sensors detect the misfolding and aggregation of proteins in specific organelles and respond by activating stress-responsive signaling pathways. These culminate in transcriptional and posttranscriptional programs that up-regulate the homeostatic mechanisms unique to that organelle. Proteostasis is also strongly influenced by the general properties of protein folding that are intrinsic to every proteome. These include the kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We then introduce chemical approaches to prevent the misfolding or aggregation of specific proteins through direct binding interactions. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organismal proteostasis.


Asunto(s)
Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Animales , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiología , Respuesta al Choque Térmico , Homeostasis , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Cinética , Modelos Biológicos , Vías Secretoras , Transducción de Señal , Estrés Fisiológico
13.
EMBO Rep ; 8(12): 1196-201, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17975557

RESUMEN

The self-perpetuating conformational change of the translation termination factor Sup35 is associated with a prion phenomenon of Saccharomyces cerevisiae. In vitro, the prion-determining region (NM) of Sup35 assembles into amyloid-like fibres through a mechanism of nucleated conformational conversion. Here, we describe an alternative assembly pathway of NM that produces filaments that are composed of beta-strands and random coiled regions with several-fold smaller diameters than the amyloid fibres. NM filaments are not detectable with either thioflavin T or Congo Red and do not show SDS or protease resistance. As filaments do not self-convert into fibres and do not act as seed, they are not intermediates of amyloid fibre formation. Instead, they represent a stable off-pathway form. Similar to mammalian prion proteins, Sup35 contains oligopeptide repeats located in the NM region. We found that the number of repeats determines the partitioning of the protein between filaments and amyloid-like fibres. Low numbers of repeats favour the formation of the filamentous structure, whereas high numbers of repeats favour the formation of amyloid-like fibres.


Asunto(s)
Priones/química , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Amiloide/metabolismo , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Microscopía de Fuerza Atómica , Oligopéptidos/química , Oligopéptidos/metabolismo , Factores de Terminación de Péptidos , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier
14.
J Biol Chem ; 280(25): 23869-75, 2005 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15845535

RESUMEN

Cellular protein folding is challenged by environmental stress and aging, which lead to aberrant protein conformations and aggregation. One way to antagonize the detrimental consequences of protein misfolding is to reactivate vital proteins from aggregates. In the yeast Saccharomyces cerevisiae, Hsp104 facilitates disaggregation and reactivates aggregated proteins with assistance from Hsp70 (Ssa1) and Hsp40 (Ydj1). The small heat shock proteins, Hsp26 and Hsp42, also function in the recovery of misfolded proteins and prevent aggregation in vitro, but their in vivo roles in protein homeostasis remain elusive. We observed that after a sublethal heat shock, a majority of Hsp26 becomes insoluble. Its return to the soluble state during recovery depends on the presence of Hsp104. Further, cells lacking Hsp26 are impaired in the disaggregation of an easily assayed heat-aggregated reporter protein, luciferase. In vitro, Hsp104, Ssa1, and Ydj1 reactivate luciferase:Hsp26 co-aggregates 20-fold more efficiently than luciferase aggregates alone. Small Hsps also facilitate the Hsp104-mediated solubilization of polyglutamine in yeast. Thus, Hsp26 renders aggregates more accessible to Hsp104/Ssa1/Ydj1. Small Hsps partially suppress toxicity, even in the absence of Hsp104, potentially by sequestering polyglutamine from toxic interactions with other proteins. Hence, Hsp26 plays an important role in pathways that defend cells against environmental stress and the types of protein misfolding seen in neurodegenerative disease.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Solubilidad
15.
EMBO J ; 21(1-2): 12-21, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11782421

RESUMEN

AAA proteins share a conserved active site for ATP hydrolysis and regulate many cellular processes. AAA proteins are oligomeric and often have multiple ATPase domains per monomer, which is suggestive of complex allosteric kinetics of ATP hydrolysis. Here, using wild-type Hsp104 in the hexameric state, we demonstrate that its two AAA modules (NBD1 and NBD2) have very different catalytic activities, but each displays cooperative kinetics of hydrolysis. Using mutations in the AAA sensor-1 motif of NBD1 and NBD2 that reduce the rate of ATP hydrolysis without affecting nucleotide binding, we also examine the consequences of keeping each site in the ATP-bound state. In vitro, reducing k(cat) at NBD2 significantly alters the steady-state kinetic behavior of NBD1. Thus, Hsp104 exhibits allosteric communication between the two sites in addition to homotypic cooperativity at both NBD1 and NBD2. In vivo, each sensor-1 mutation causes a loss-of-function phenotype in two assays of Hsp104 function (thermotolerance and yeast prion propagation), demonstrating the importance of ATP hydrolysis as distinct from ATP binding at each site for Hsp104 function.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , ADN de Hongos/genética , Proteínas de Choque Térmico/genética , Hidrólisis , Cinética , Mutación , Concentración Osmolar , Fenotipo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Transformación Genética
16.
Proc Natl Acad Sci U S A ; 99(5): 2732-7, 2002 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-11867765

RESUMEN

Hsp104 from Saccharomyces cerevisiae is a hexameric protein with two AAA ATPase domains (N- and C-terminal nucleotide-binding domains NBD1 and NBD2, respectively) per monomer. Our previous analysis of the Hsp104 ATP hydrolysis cycle revealed that NBD1 and NBD2 have very different catalytic properties, but each shows positive cooperativity in hydrolysis. There is also communication between the two domains, in that ATP hydrolysis at NBD1 depends on the nucleotide that is bound to NBD2. Here, we extend our understanding of the Hsp104 ATP hydrolysis cycle through mutagenesis of the AAA sensor-2 motif in NBD2. To do so, we took advantage of the lack of tryptophan residues in Hsp104 to place a single tryptophan in the C-terminal domain (Y819W). The Y819W substitution has no significant effects on folding stability of the C-terminal domain or on ATP hydrolysis by NBD1 or NBD2. The fluorescence of this tryptophan changes in response to ATP and ADP binding, allowing the K(d) and Hill coefficient to be determined for each nucleotide. By using this site-specific probe of binding, we analyze the effect of mutating the conserved arginine residue in the sensor-2 motif in Hsp104 NBD2. An R826M mutation causes nearly equal decreases in affinity of NBD2 for both ATP and ADP, indicating that at this site, the sensor-2 provides binding energy, but does not act to sense the difference between these nucleotides. In addition, the rate of ATP hydrolysis at NBD1 is decreased by the R826M mutation, providing further evidence for interdomain communication in the Hsp104 ATP hydrolysis cycle.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Colorantes Fluorescentes , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Proc Natl Acad Sci U S A ; 101(8): 2287-92, 2004 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-14983002

RESUMEN

A self-perpetuating change in the conformation of the translation termination factor Sup35p is the basis for the prion [PSI+], a protein-based genetic element of Saccharomyces cerevisiae. In a process closely allied to in vivo conversion, the purified soluble, prion-determining region of Sup35p (NM) converts to amyloid fibers by means of nucleated conformational conversion. First, oligomeric species convert to nuclei, and these nuclei then promote polymerization of soluble protein into amyloid fibers. To elucidate the nature of the polymerization step, we created single-cysteine substitution mutants at different positions in NM to provide unique attachment sites for various probes. In vivo, the mutants behaved like wild-type protein in both the [psi-] and [PSI+] states. In vitro, they assembled with wild-type kinetics and formed fibers with the same morphologies. When labeled with fluorescent probes, two mutants, NMT158C and NME167C, exhibited a change in fluorescence coincident with amyloid assembly. These mutants provided a sensitive measure for the kinetics of fiber elongation, and the lag phase in conversion. The cysteine in the mutant NMK184C remained exposed after assembly. When labeled with biotin and bound to streptavidin beads, it was used to capture radiolabeled soluble NM in the process of conversion. This process established the existence of a detergent-susceptible intermediate in fiber elongation. Thus, the second stage of nucleated conformational conversion, fiber elongation, itself contains at least two steps: the association of soluble protein with preformed fibers to form an assembly intermediate, followed by conformational conversion into amyloid.


Asunto(s)
Priones/genética , Saccharomyces cerevisiae/genética , Cinética , Priones/química , Conformación Proteica
18.
Proc Natl Acad Sci U S A ; 99 Suppl 4: 16446-53, 2002 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-12461168

RESUMEN

The yeast prion [PSI(+)] provides an epigenetic mechanism for the inheritance of new phenotypes through self-perpetuating changes in protein conformation. [PSI(+)] is a nonfunctional, ordered aggregate of the translation termination factor Sup35p that influences new Sup35 proteins to adopt the same state. The N-terminal region of Sup35p plays a central role in prion induction and propagation. The C-terminal region provides translation termination activity. The function of the highly charged, conformationally flexible middle region (M) is unknown. An M deletion mutant was capable of existing in either the prion or the nonprion state, but in either case it was mostly insoluble. Substituting a charged synthetic polypeptide for M restored solubility, but the prions formed by this variant were mitotically very unstable. Substituting charged flexible regions from two other proteins for M created variants that acquired prion states (defined as self-perpetuating changes in function transferred to them from wild-type [PSI(+)] elements), but had profoundly different properties. One was soluble in both the prion and the nonprion form, mitotically stable but meiotically unstable, and cured by guanidine HCl but not by alterations in heat shock protein 104 (Hsp104p). The other could only maintain the prion state in the presence of wild-type protein, producing Mendelian segregation patterns. The unique character of these M variants, all carrying the same N-terminal prion-determining region, demonstrate the importance of M for [PSI(+)] and suggest that a much wider range of epigenetic phenomena might be based on self-perpetuating, prion-like changes in protein conformation than suggested by our current methods for defining prion states.


Asunto(s)
Proteínas Fúngicas/genética , Priones/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Bases , Cartilla de ADN , ADN-Topoisomerasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Mitosis/genética , Factores de Terminación de Péptidos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
19.
Science ; 302(5651): 1769-72, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14657499

RESUMEN

Genome-wide screens were performed in yeast to identify genes that enhance the toxicity of a mutant huntingtin fragment or of alpha-synuclein. Of 4850 haploid mutants containing deletions of nonessential genes, 52 were identified that were sensitive to a mutant huntingtin fragment, 86 that were sensitive to alpha-synuclein, and only one mutant that was sensitive to both. Genes that enhanced toxicity of the mutant huntingtin fragment clustered in the functionally related cellular processes of response to stress, protein folding, and ubiquitin-dependent protein catabolism, whereas genes that modified alpha-synuclein toxicity clustered in the processes of lipid metabolism and vesicle-mediated transport. Genes with human orthologs were overrepresented in our screens, suggesting that we may have discovered conserved and nonoverlapping sets of cell-autonomous genes and pathways that are relevant to Huntington's disease and Parkinson's disease.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Saccharomyces cerevisiae/genética , Transporte Biológico , Eliminación de Gen , Genes Fúngicos , Humanos , Proteína Huntingtina , Metabolismo de los Lípidos , Mutación , Nitrosación , Presión Osmótica , Estrés Oxidativo , Pliegue de Proteína , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sinucleínas , Transformación Genética , Ubiquitina/metabolismo , alfa-Sinucleína
20.
Proc Natl Acad Sci U S A ; 100(8): 4527-32, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12672964

RESUMEN

Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established "top-down" fabrication techniques, molecular self-assembly is emerging as a "bottom-up" approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers. A genetically modified NM variant that presents reactive, surface-accessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were approximately 100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.


Asunto(s)
Amiloide/química , Electrónica Médica/instrumentación , Nanotecnología/métodos , Materiales Biocompatibles , Fenómenos Biofísicos , Biofisica , Estabilidad de Medicamentos , Electrodos , Oro , Ensayo de Materiales , Microscopía de Fuerza Atómica , Microscopía Electrónica , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA