Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732037

RESUMEN

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Asunto(s)
Imagenología Tridimensional , Microscopía Confocal , Mitocondrias , Humanos , Mitocondrias/metabolismo , Microscopía Confocal/métodos , Imagenología Tridimensional/métodos , Colorantes Fluorescentes/química , Potencial de la Membrana Mitocondrial , Carbocianinas/química , Rodaminas/química
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175987

RESUMEN

Neuropathic pain is a frequent feature of diabetic peripheral neuropathy (DPN) and small fiber neuropathy (SFN). Resolving the genetic architecture of these painful neuropathies will lead to better disease management strategies, counselling and intervention. Our aims were to profile ten sodium channel genes (SCG) expressed in a nociceptive pathway in painful and painless DPN and painful and painless SFN patients, and to provide a perspective for clinicians who assess patients with painful peripheral neuropathy. Between June 2014 and September 2016, 1125 patients with painful-DPN (n = 237), painless-DPN (n = 309), painful-SFN (n = 547) and painless-SFN (n = 32), recruited in four different centers, were analyzed for SCN3A, SCN7A-SCN11A and SCN1B-SCN4B variants by single molecule Molecular inversion probes-Next Generation Sequence. Patients were grouped based on phenotype and the presence of SCG variants. Screening of SCN3A, SCN7A-SCN11A, and SCN1B-SCN4B revealed 125 different (potential) pathogenic variants in 194 patients (17.2%, n = 194/1125). A potential pathogenic variant was present in 18.1% (n = 142/784) of painful neuropathy patients vs. 15.2% (n = 52/341) of painless neuropathy patients (17.3% (n = 41/237) for painful-DPN patients, 14.9% (n = 46/309) for painless-DPN patients, 18.5% (n = 101/547) for painful-SFN patients, and 18.8% (n = 6/32) for painless-SFN patients). Of the variants detected, 70% were in SCN7A, SCN9A, SCN10A and SCN11A. The frequency of SCN9A and SCN11A variants was the highest in painful-SFN patients, SCN7A variants in painful-DPN patients, and SCN10A variants in painless-DPN patients. Our findings suggest that rare SCG genetic variants may contribute to the development of painful neuropathy. Genetic profiling and SCG variant identification should aid in a better understanding of the genetic variability in patients with painful and painless neuropathy, and may lead to better risk stratification and the development of more targeted and personalized pain treatments.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Neuralgia/patología , Neuropatías Diabéticas/patología , Canales de Sodio , Canal de Sodio Activado por Voltaje NAV1.7/genética
3.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806193

RESUMEN

Neuropathic pain is common in diabetic peripheral neuropathy (DN), probably caused by pathogenic ion channel gene variants. Therefore, we performed molecular inversion probes-next generation sequencing of 5 transient receptor potential cation channels, 8 potassium channels and 2 calcium-activated chloride channel genes in 222 painful- and 304 painless-DN patients. Twelve painful-DN (5.4%) patients showed potentially pathogenic variants (five nonsense/frameshift, seven missense, one out-of-frame deletion) in ANO3 (n = 3), HCN1 (n = 1), KCNK18 (n = 2), TRPA1 (n = 3), TRPM8 (n = 3) and TRPV4 (n = 1) and fourteen painless-DN patients (4.6%-three nonsense/frameshift, nine missense, one out-of-frame deletion) in ANO1 (n = 1), KCNK18 (n = 3), KCNQ3 (n = 1), TRPA1 (n = 2), TRPM8 (n = 1), TRPV1 (n = 3) and TRPV4 (n = 3). Missense variants were present in both conditions, presumably with loss- or gain-of-functions. KCNK18 nonsense/frameshift variants were found in painless/painful-DN, making a causal role in pain less likely. Surprisingly, premature stop-codons with likely nonsense-mediated RNA-decay were more frequent in painful-DN. Although limited in number, painful-DN patients with ion channel gene variants reported higher maximal pain during the night and day. Moreover, painful-DN patients with TRP variants had abnormal thermal thresholds and more severe pain during the night and day. Our results suggest a role of ion channel gene variants in neuropathic pain, but functional validation is required.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Neuralgia , Canales de Potencial de Receptor Transitorio , Anoctaminas , Humanos , Canales de Potasio , Canales Catiónicos TRPV/genética , Canales de Potencial de Receptor Transitorio/fisiología
4.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430572

RESUMEN

Neuropathic pain is a characteristic feature of small fiber neuropathy (SFN), which in 18% of the cases is caused by genetic variants in voltage-gated sodium ion channels. In this study, we assessed the role of fifteen other ion channels in neuropathic pain. Patients with SFN (n = 414) were analyzed for ANO1, ANO3, HCN1, KCNA2, KCNA4, KCNK18, KCNN1, KCNQ3, KCNQ5, KCNS1, TRPA1, TRPM8, TRPV1, TRPV3 and TRPV4 variants by single-molecule molecular inversion probes-next-generation sequencing. These patients did not have genetic variants in SCN3A, SCN7A-SCN11A and SCN1B-SCN4B. In twenty patients (20/414, 4.8%), a potentially pathogenic heterozygous variant was identified in an ion-channel gene (ICG). Variants were present in seven genes, for two patients (0.5%) in ANO3, one (0.2%) in KCNK18, two (0.5%) in KCNQ3, seven (1.7%) in TRPA1, three (0.7%) in TRPM8, three (0.7%) in TRPV1 and two (0.5%) in TRPV3. Variants in the TRP genes were the most frequent (n = 15, 3.6%), partly in patients with high mean maximal pain scores VAS = 9.65 ± 0.7 (n = 4). Patients with ICG variants reported more severe pain compared to patients without such variants (VAS = 9.36 ± 0.72 vs. VAS = 7.47 ± 2.37). This cohort study identified ICG variants in neuropathic pain in SFN, complementing previous findings of ICG variants in diabetic neuropathy. These data show that ICG variants are central in neuropathic pain of different etiologies and provides promising gene candidates for future research.


Asunto(s)
Canales Iónicos , Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Anoctaminas , Estudios de Cohortes , Neuropatías Diabéticas/genética , Neuralgia/genética , Canales de Potasio/genética , Neuropatía de Fibras Pequeñas/genética , Canales Iónicos/genética
5.
BMC Bioinformatics ; 22(1): 212, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892629

RESUMEN

BACKGROUND: Mutation-induced variations in the functional architecture of the NaV1.7 channel protein are causally related to a broad spectrum of human pain disorders. Predicting in silico the phenotype of NaV1.7 variant is of major clinical importance; it can aid in reducing costs of in vitro pathophysiological characterization of NaV1.7 variants, as well as, in the design of drug agents for counteracting pain-disease symptoms. RESULTS: In this work, we utilize spatial complexity of hydropathic effects toward predicting which NaV1.7 variants cause pain (and which are neutral) based on the location of corresponding mutation sites within the NaV1.7 structure. For that, we analyze topological and scaling hydropathic characteristics of the atomic environment around NaV1.7's pore and probe their spatial correlation with mutation sites. We show that pain-related mutation sites occupy structural locations in proximity to a hydrophobic patch lining the pore while clustering at a critical hydropathic-interactions distance from the selectivity filter (SF). Taken together, these observations can differentiate pain-related NaV1.7 variants from neutral ones, i.e., NaV1.7 variants not causing pain disease, with 80.5[Formula: see text] sensitivity and 93.7[Formula: see text] specificity [area under the receiver operating characteristics curve = 0.872]. CONCLUSIONS: Our findings suggest that maintaining hydrophobic NaV1.7 interior intact, as well as, a finely-tuned (dictated by hydropathic interactions) distance from the SF might be necessary molecular conditions for physiological NaV1.7 functioning. The main advantage for using the presented predictive scheme is its negligible computational cost, as well as, hydropathicity-based biophysical rationalization.


Asunto(s)
Dolor , Humanos , Mutación , Fenotipo
6.
J Biol Phys ; 47(1): 61-77, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735400

RESUMEN

Voltage-gated sodium channels (NavChs) are pore-forming membrane proteins that regulate the transport of sodium ions through the cell membrane. Understanding the structure and function of NavChs is of major biophysical, as well as clinical, importance given their key role in cellular pathophysiology. In this work, we provide a computational framework for modeling system-size-dependent, i.e., cumulative, atomic properties around a NavCh's pore. We illustrate our methodologies on the bacterial NavAb channel captured in a closed-pore state where we demonstrate that the atomic environment around its pore exhibits a bi-phasic spatial organization dictated by the structural separation of the pore domains (PDs) from the voltage-sensing domains (VSDs). Accordingly, a mathematical model describing packing of atoms around NavAb's pore is constructed that allows-under certain conservation conditions-for a power-law approximation of the cumulative hydropathic dipole field effect acting along NavAb's pore. This verified the non-extensitivity hypothesis for the closed-pore NavAb channel and revealed a long-range hydropathic interactions law regulating atom-packing around the NavAb's selectivity filter. Our model predicts a PDs-VSDs coupling energy of [Formula: see text] kcal/mol corresponding to a global maximum of the atom-packing energy profile. Crucially, we demonstrate for the first time how critical phenomena can emerge in a single-channel structure as a consequence of the non-extensive character of its atomic porous environment.


Asunto(s)
Sodio , Canales de Sodio Activados por Voltaje , Membrana Celular/metabolismo , Iones , Sodio/metabolismo
7.
Proteins ; 88(10): 1319-1328, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32447794

RESUMEN

Voltage-gated sodium channels (NavChs) are biological pores that control the flow of sodium ions through the cell membrane. In humans, mutations in genes encoding NavChs can disrupt physiological cellular activity thus leading to a wide spectrum of diseases. Here, we present a topological connection between the functional architecture of a NavAb bacterial channel and accumulation of atomic hydropathicity around its pore. This connection is established via a scaling analysis methodology that elucidates how intrachannel hydropathic density variations translate into hydropathic dipole field configurations along the pore. Our findings suggest the existence of a nonrandom cumulative hydropathic topology that is organized parallel to the membrane surface so that pore's stability, as well as, gating behavior are guaranteed. Given the biophysical significance of the hydropathic effect, our study seeks to provide a computational framework for studying cumulative hydropathic topological properties of NavChs and pore-forming proteins in general.


Asunto(s)
Arcobacter/química , Proteínas Bacterianas/química , Activación del Canal Iónico/fisiología , Sodio/química , Canales de Sodio Activados por Voltaje/química , Secuencia de Aminoácidos , Arcobacter/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Sodio/metabolismo , Termodinámica , Canales de Sodio Activados por Voltaje/metabolismo
8.
J Neurol Neurosurg Psychiatry ; 90(3): 342-352, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30554136

RESUMEN

BACKGROUND: Neuropathic pain is common in peripheral neuropathy. Recent genetic studies have linked pathogenic voltage-gated sodium channel (VGSC) variants to human pain disorders. Our aims are to determine the frequency of SCN9A, SCN10A and SCN11A variants in patients with pure small fibre neuropathy (SFN), analyse their clinical features and provide a rationale for genetic screening. METHODS: Between September 2009 and January 2017, 1139 patients diagnosed with pure SFN at our reference centre were screened for SCN9A, SCN10A and SCN11A variants. Pathogenicity of variants was classified according to established guidelines of the Association for Clinical Genetic Science and frequencies were determined. Patients with SFN were grouped according to the VGSC variants detected, and clinical features were compared. RESULTS: Among 1139 patients with SFN, 132 (11.6%) patients harboured 73 different (potentially) pathogenic VGSC variants, of which 50 were novel and 22 were found in ≥ 1 patient. The frequency of (potentially) pathogenic variants was 5.1% (n=58/1139) for SCN9A, 3.7% (n=42/1139) for SCN10A and 2.9% (n=33/1139) for SCN11A. Only erythromelalgia-like symptoms and warmth-induced pain were significantly more common in patients harbouring VGSC variants. CONCLUSION: (Potentially) pathogenic VGSC variants are present in 11.6% of patients with pure SFN. Therefore, genetic screening of SCN9A, SCN10A and SCN11A should be considered in patients with pure SFN, independently of clinical features or underlying conditions.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Neuropatía de Fibras Pequeñas/genética , Anciano , Femenino , Pruebas Genéticas , Variación Genética/genética , Humanos , Masculino , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.9/genética , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Neuropatía de Fibras Pequeñas/complicaciones , Neuropatía de Fibras Pequeñas/diagnóstico
9.
Hum Reprod ; 33(7): 1331-1341, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850888

RESUMEN

STUDY QUESTION: Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER: We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY: mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION: We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE: By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA: All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION: The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S): This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.


Asunto(s)
Blastómeros/metabolismo , ADN Mitocondrial/genética , Mutación de Línea Germinal , Oocitos/metabolismo , Adulto , ADN Mitocondrial/metabolismo , Femenino , Células Germinativas/metabolismo , Humanos , Masculino , Fosforilación Oxidativa
10.
J Med Genet ; 54(10): 693-697, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28668821

RESUMEN

BACKGROUND: Preimplantation genetic diagnosis (PGD) is a reproductive strategy for mitochondrial DNA (mtDNA) mutation carriers, strongly reducing their risk of affected offspring. Embryos either without the mutation or with mutation load below the phenotypic threshold are transferred to the uterus. Because of incidental heteroplasmy deviations in single blastomere and the relatively limited data available, we so far preferred relying on two blastomeres rather than one. Considering the negative effect of a two-blastomere biopsy protocol compared with a single-blastomere biopsy protocol on live birth delivery rate, we re-evaluated the error rate in our current dataset. METHODS: For the m.3243A>G mutation, sufficient embryos/blastomeres were available for a powerful analysis. The diagnostic error rate, defined as a potential false-negative result, based on a threshold of 15%, was determined in 294 single blastomeres analysed in 73 embryos of 9 female m.3243A>G mutation carriers. RESULTS: Only one out of 294 single blastomeres (0.34%) would have resulted in a false-negative diagnosis. False-positive diagnoses were not detected. CONCLUSION: Our findings support a single-blastomere biopsy PGD protocol for the m.3243A>G mutation as the diagnostic error rate is very low. As in the early preimplantation embryo no mtDNA replication seems to occur and the mtDNA is divided randomly among the daughter cells, we conclude this result to be independent of the specific mutation and therefore applicable to all mtDNA mutations.


Asunto(s)
Blastómeros , ADN Mitocondrial/genética , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Biopsia , Blastocisto , Errores Diagnósticos , Femenino , Heterocigoto , Humanos , Mutación , Embarazo
11.
Eur Heart J ; 37(23): 1815-22, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-26497160

RESUMEN

AIMS: Phenotypic heterogeneity and incomplete penetrance are common in patients with hypertrophic cardiomyopathy (HCM). We aim to improve the understanding in genotype-phenotype correlations in HCM, particularly the contribution of an MYL2 founder mutation and risk factors to left ventricular hypertrophic remodelling. METHODS AND RESULTS: We analysed 14 HCM families of whom 38 family members share the MYL2 c.64G > A [p.(Glu22Lys)] mutation and a common founder haplotype. In this unique cohort, we investigated factors influencing phenotypic outcome in addition to the primary mutation. The mutation alone showed benign disease manifestation with low penetrance. The co-presence of additional risk factors for hypertrophy such as hypertension, obesity, or other sarcomeric gene mutation increased disease penetrance substantially and caused HCM in 89% of MYL2 mutation carriers (P = 0.0005). The most prominent risk factor was hypertension, observed in 71% of mutation carriers with HCM and an additional risk factor. CONCLUSION: The MYL2 mutation c.64G > A on its own is incapable of triggering clinical HCM in most carriers. However, the presence of an additional risk factor for hypertrophy, particularly hypertension, adds to the development of HCM. Early diagnosis of risk factors is important for early treatment of MYL2 mutation carriers and close monitoring should be guaranteed in this case. Our findings also suggest that the presence of hypertension or another risk factor for hypertrophy should not be an exclusion criterion for genetic studies.


Asunto(s)
Miosinas Cardíacas/genética , Efecto Fundador , Hipertrofia Ventricular Izquierda/genética , Mutación/genética , Cadenas Ligeras de Miosina/genética , Femenino , Alemania/epidemiología , Humanos , Hipertensión/genética , Hipertensión/mortalidad , Hipertrofia Ventricular Izquierda/mortalidad , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Remodelación Ventricular/genética
13.
Am J Gastroenterol ; 110(3): 462-70, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25732418

RESUMEN

OBJECTIVES: Nonalcoholic steatohepatitis (NASH) is the most severe form of a hepatic condition known as nonalcoholic fatty liver disease (NAFLD). NASH is histologically characterized by hepatic fat accumulation, inflammation, and ballooning, and eventually coupled with fibrosis that, in turn, may progress to end-stage liver disease even in young individuals. Hence, there is a critical need for specific noninvasive markers to predict hepatic inflammation at an early age. We investigated whether plasma levels of cathepsin D (CatD), a lysosomal protease, correlated with the severity of liver inflammation in pediatric NAFLD. METHODS: Liver biopsies from children (n=96) with NAFLD were histologically evaluated according to the criteria of Kleiner (NAFLD activity score) and the Brunt's criteria. At the time of liver biopsy, blood was taken and levels of CatD, alanine aminotransferase (ALT), and cytokeratin-18 (CK-18) were measured in plasma. RESULTS: Plasma CatD levels were significantly lower in subjects with liver inflammation compared with steatotic subjects. Furthermore, we found that CatD levels were gradually reduced and corresponded with increasing severity of liver inflammation, steatosis, hepatocellular ballooning, and NAFLD activity score. CatD levels correlated with pediatric NAFLD disease progression better than ALT and CK-18. In particular, CatD showed a high diagnostic accuracy (area under receiver operating characteristic curve (ROC-AUC): 0.94) for the differentiation between steatosis and hepatic inflammation, and reached almost the maximum accuracy (ROC-AUC: 0.998) upon the addition of CK-18. CONCLUSIONS: Plasma CatD holds a high diagnostic value to distinguish pediatric patients with hepatic inflammation from children with steatosis.


Asunto(s)
Catepsina D/sangre , Inflamación , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico , Alanina Transaminasa/sangre , Análisis de Varianza , Área Bajo la Curva , Biomarcadores/sangre , Biopsia , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Humanos , Inflamación/sangre , Inflamación/diagnóstico , Inflamación/fisiopatología , Queratina-18/sangre , Masculino , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico , Curva ROC , Índice de Severidad de la Enfermedad
14.
Breast Cancer Res ; 15(2): R29, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23566419

RESUMEN

INTRODUCTION: Cyclooxygenase-2 (COX-2) is frequently over-expressed in primary breast cancer. In transgenic breast cancer models, over-expression of COX-2 leads to tumour formation while COX-2 inhibition exerts anti-tumour effects in breast cancer cell lines. To further determine the effect of COX-2 inhibition in primary breast cancer, we aimed to identify transcriptional changes in breast cancer tissues of patients treated with the selective COX-2 inhibitor celecoxib. METHODS: In a single-centre double-blind phase II study, thirty-seven breast cancer patients were randomised to receive either pre-operative celecoxib (400 mg) twice daily for two to three weeks (n = 22) or a placebo according to the same schedule (n = 15). Gene expression in fresh-frozen pre-surgical biopsies (before treatment) and surgical excision specimens (after treatment) was profiled by using Affymetrix arrays. Differentially expressed genes and altered pathways were bioinformatically identified. Expression of selected genes was validated by quantitative PCR (qPCR). Immunohistochemical protein expression analyses of the proliferation marker Ki-67, the apoptosis marker cleaved caspase-3 and the neo-angiogenesis marker CD34 served to evaluate biological response. RESULTS: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens. Significant expression changes in six out of eight genes could be validated by qPCR. Pathway analyses revealed over-representation of deregulated genes in the networks of proliferation, cell cycle, extracellular matrix biology, and inflammatory immune response. The Ki-67 mean change relative to baseline was -29.1% (P = 0.019) and -8.2% (P = 0.384) in the treatment and control arm, respectively. Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029). Cleaved caspase-3 and CD34 expression were not significantly different between the celecoxib-treated and placebo-treated groups. CONCLUSIONS: Short-term COX-2 inhibition by celecoxib induces transcriptional programs supporting anti-tumour activity in primary breast cancer tissue. The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells. Therefore, COX-2 inhibition should be considered as a treatment strategy for further clinical testing in primary breast cancer. TRIAL REGISTRATION: ClinicalTrials.gov NCT01695226.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Inhibidores de la Ciclooxigenasa/uso terapéutico , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/tratamiento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/patología , Celecoxib , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Eur J Public Health ; 23(6): 986-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23220627

RESUMEN

BACKGROUND: Lower educated people have a higher prevalence of metabolic risk factors (MRF), that is, high waist circumference (WC), high systolic blood pressure, low high-density lipoprotein cholesterol level, high triglycerides and high fasting glucose levels. Behavioural and psychosocial factors cannot fully explain this educational gradient. We aim to examine the possible role of genetic factors by estimating the extent to which education and MRF share a genetic basis and the extent to which the heritability of MRF varies across educational levels. METHODS: We examined 388 twin pairs, aged 18-34 years, from the Belgian East Flanders Prospective Twin Survey. Using structural equation modelling, a Cholesky bivariate model was applied to assess the shared genetic basis between education and MRF. The heritability of MRF across education levels was estimated using a non-linear multivariate Gaussian regression. RESULTS: Fifteen percent (P < 0.01) of the negative relation between education and WC was because of genes shared between these two traits. Furthermore, the heritability of WC was lower in the lowest educated group (65%) compared with the highest educated group (78%, P = 0.04). The lower heritabilities among the lower educated twins for the other MRF were not significant. The heritability of glucose was higher in the lowest education (80%) group compared with the high education group (67%, P = 0.01). CONCLUSION: Our findings suggest that genetic factors partly explain educational differences in WC. Furthermore, the lower heritability estimates in WC in the lower educated young adults suggest opportunities for environmental interventions to prevent the development of full-blown metabolic syndrome in middle and older age.


Asunto(s)
Escolaridad , Síndrome Metabólico/genética , Adolescente , Adulto , Bélgica/epidemiología , Glucemia/análisis , Glucemia/genética , Presión Sanguínea/genética , HDL-Colesterol/sangre , HDL-Colesterol/genética , Enfermedades en Gemelos/epidemiología , Enfermedades en Gemelos/etiología , Enfermedades en Gemelos/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Modelos Lineales , Masculino , Síndrome Metabólico/epidemiología , Síndrome Metabólico/etiología , Estudios Prospectivos , Factores de Riesgo , Triglicéridos/sangre , Triglicéridos/genética , Gemelos Dicigóticos/genética , Gemelos Dicigóticos/estadística & datos numéricos , Gemelos Monocigóticos/genética , Gemelos Monocigóticos/estadística & datos numéricos , Circunferencia de la Cintura/genética , Adulto Joven
16.
Front Ophthalmol (Lausanne) ; 3: 1309836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38983060

RESUMEN

Introduction: Primary open-angle glaucoma (POAG) is a characteristic optic neuropathy, caused by degeneration of the optic nerve-forming neurons, the retinal ganglion cells (RGCs). High intraocular pressure (IOP) and aging have been identified as major risk factors; yet the POAG pathophysiology is not fully understood. Since RGCs have high energy requirements, mitochondrial dysfunction may put the survivability of RGCs at risk. We explored in buffy coat DNA whether mtDNA variants and their distribution throughout the mtDNA could be risk factors for POAG. Methods: The mtDNA was sequenced from age- and sex-matched study groups, being high tension glaucoma (HTG, n=71), normal tension glaucoma patients (NTG, n=33), ocular hypertensive subjects (OH, n=7), and cataract controls (without glaucoma; n=30), all without remarkable comorbidities. Results: No association was found between the number of mtDNA variants in genes encoding proteins, tRNAs, rRNAs, and in non-coding regions in the different study groups. Next, variants that controls shared with the other groups were discarded. A significantly higher number of exclusive variants was observed in the D-loop region for the HTG group (~1.23 variants/subject), in contrast to controls (~0.35 variants/subject). In the D-loop, specifically in the 7S DNA sub-region within the Hypervariable region 1 (HV1), we found that 42% of the HTG and 27% of the NTG subjects presented variants, while this was only 14% for the controls and OH subjects. As we have previously reported a reduction in mtDNA copy number in HTG, we analysed if specific D-loop variants could explain this. While the majority of glaucoma patients with the exclusive D-loop variants m.72T>C, m.16163 A>G, m.16186C>T, m.16298T>C, and m.16390G>A presented a mtDNA copy number below controls median, no significant association between these variants and low copy number was found and their possible negative role in mtDNA replication remains uncertain. Approximately 38% of the HTG patients with reduced copy number did not carry any exclusive D-loop or other mtDNA variants, which indicates that variants in nuclear-encoded mitochondrial genes, environmental factors, or aging might be involved in those cases. Conclusion: In conclusion, we found that variants in the D-loop region may be a risk factor in a subgroup of POAG, possibly by affecting mtDNA replication.

17.
J Biol Chem ; 286(11): 8866-74, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21239484

RESUMEN

Suckling "F/A2" mice, which overexpress arginase-I in their enterocytes, develop a syndrome (hypoargininemia, reduced hair and muscle growth, impaired B-cell maturation) that resembles IGF1 deficiency. The syndrome may result from an impaired function of the GH-IGF1 axis, activation of the stress-kinase GCN2, and/or blocking of the mTORC1-signaling pathway. Arginine deficiency inhibited GH secretion and decreased liver Igf1 mRNA and plasma IGF1 concentration, but did not change muscle IGF1 concentration. GH supplementation induced Igf1 mRNA synthesis, but did not restore growth, ruling out direct involvement of the GH-IGF1 axis. In C2C12 muscle cells, arginine withdrawal activated GCN2 signaling, without impacting mTORC1 signaling. In F/A2 mice, the reduction of plasma and tissue arginine concentrations to ∼25% of wild-type values activated GCN2 signaling, but mTORC1-mediated signaling remained unaffected. Gcn2-deficient F/A2 mice suffered from hypoglycemia and died shortly after birth. Because common targets of all stress kinases (eIF2α phosphorylation, Chop mRNA expression) were not increased in these mice, the effects of arginine deficiency were solely mediated by GCN2.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Arginasa/biosíntesis , Arginina/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Animales Lactantes/metabolismo , Arginasa/genética , Arginina/genética , Linfocitos B/enzimología , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Enfermedades del Cabello/enzimología , Enfermedades del Cabello/genética , Hipoglucemia/enzimología , Hipoglucemia/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Enfermedades Musculares/enzimología , Enfermedades Musculares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas , Síndrome , Serina-Treonina Quinasas TOR
19.
J Cell Biochem ; 111(6): 1575-85, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21053274

RESUMEN

Adipose tissue is currently being recognized as an important endocrine organ, carrying defects in a number of metabolic diseases. Mitochondria play a key role in normal adipose tissue function and mitochondrial alterations can result in pathology, like lipodystrophy or type 2 diabetes. Although Pgc1α is regarded as the main regulator of mitochondrial function, downstream Nrf1 is the key regulator of mitochondrial biogenesis. Nrf1 is also involved in a wide range of other processes, including proliferation, innate immune response, and apoptosis. To determine transcriptional targets of Nrf1, 3T3-L1 preadipocytes were transfected with either pNrf1 or a control vector. Two days post-confluence, 3T3-L1 preadipocytes were allowed to differentiate. At day 8 of differentiation, Nrf1 overexpressing cells had an increased mtDNA copy number and reduced lipid content. This was not associated with an increased ATP production rate per cell. Using global gene expression analysis, we observed that Nrf1 overexpression stimulated cell proliferation, apoptosis, and cytokine expression. In addition, prolonged Nrf1 induced an adipokine expression profile of insulin resistant adipocytes. Nrf1 has a wide range of transcriptional targets, stimulators as well as inhibitors of adipose tissue functioning. Therefore, post-transcriptional regulation of Nrf1, or stimulating specific Nrf1 targets may be a more suitable approach for stimulating mitochondrial biogenesis and treating adipose tissue defects, instead of directly stimulating Nrf1 expression. In addition, our results show that short-term effects can drastically differ from long-term effects.


Asunto(s)
Adipocitos/inmunología , Adipocitos/metabolismo , Resistencia a la Insulina/fisiología , Factor Nuclear 1 de Respiración/metabolismo , Células 3T3-L1 , Adipocitos/ultraestructura , Adipogénesis/genética , Adipogénesis/inmunología , Animales , Apoptosis/genética , Apoptosis/inmunología , Proliferación Celular , ADN Mitocondrial/genética , Resistencia a la Insulina/genética , Ratones , Microscopía Electrónica de Transmisión , Factor Nuclear 1 de Respiración/genética , Reacción en Cadena de la Polimerasa
20.
Epileptic Disord ; 22(2): 176-182, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32301730

RESUMEN

The purpose of this study was to determine a possible association between two GABA transporter (GAT) single-nucleotide polymorphisms (SNPs), rs2697153 G>A in SLC6A1 (GAT-1) and rs2272400 C>T in SLC6A11 (GAT-3), and drug-resistant temporal lobe epilepsy (TLE). DNA was isolated from 138 TLE patients (from the neocortex) and 94 non-epileptic controls (from blood/buccal swaps), and amplified by polymerase chain reaction and subjected to restriction fragment length polymorphism assays. A subgroup of patients with a positive history of febrile seizures (FS+) and traumatic brain injury (TBI+) were investigated in a separate analysis. P values were obtained using the Chi-Square test and Fishers exact test. The GAT-1 SNP was different between patients and controls (p<0.05); the AA genotype was observed in 40% of the cases vs 23% of the controls (p<0.05). Thirty-one patients were FS+ and the GAT-3 CT genotype was observed significantly more frequently in the FS+ group (14%) than in the FS- group (1%; p<0.01). Thirteen patients were TBI+, and genotyping for GAT-1 and GAT-3 in these patients did not result in statistical differences between TBI+ and TBI- groups. The findings suggest that TLE is associated with GAT-1 and GAT-3 SNPs. More specifically, GAT-3 c1572T seems to be associated with TLE in patients with FS+. However, the pathophysiological consequences of these SNPs remain to be elucidated.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Convulsiones Febriles/genética , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA