Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glob Chang Biol ; 27(7): 1457-1469, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33347684

RESUMEN

We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a "no mitigation" scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocean.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Océano Atlántico , Humanos , Paris , Estaciones del Año
2.
Am Nat ; 189(5): 526-538, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28410026

RESUMEN

The duration of parental care in animals varies widely, from none to lifelong. Such variation is typically thought to represent a trade-off between growth and safety. Seabirds show wide variation in the age at which offspring leave the nest, making them ideal to test the idea that a trade-off between high energy gain at sea and high safety at the nest drives variation in departure age (Ydenberg's model). To directly test the model assumptions, we attached time-depth recorders to murre parents (fathers [which do all parental care at sea] and mothers; [Formula: see text] of each). Except for the initial mortality experienced by chicks departing from the colony, the mortality rate at sea was similar to the mortality rate at the colony. However, energy gained by the chick per day was ∼2.1 times as high at sea compared with at the colony because the father spent more time foraging, since he no longer needed to spend time commuting to and from the colony. Compared with the mother, the father spent ∼2.6 times as much time diving per day and dived in lower-quality foraging patches. We provide a simple model for optimal departure date based on only (1) the difference in growth rate at sea relative to the colony and (2) the assumption that transition mortality from one life-history stage to the other is size dependent. Apparently, large variation in the duration of parental care can arise simply as a result of variation in energy gain without any trade-off with safety.


Asunto(s)
Charadriiformes/fisiología , Ingestión de Energía , Conducta Alimentaria , Longevidad , Modelos Biológicos , Animales , Charadriiformes/crecimiento & desarrollo , Buceo , Ecosistema , Femenino , Masculino , Padres
3.
Environ Pollut ; 343: 123110, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086506

RESUMEN

Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.


Asunto(s)
Charadriiformes , Mercurio , Selenio , Oligoelementos , Animales , Humanos , Mercurio/análisis , Isótopos de Carbono , Regiones Árticas , Monitoreo del Ambiente
4.
Sci Total Environ ; 844: 156944, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35752241

RESUMEN

Since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of mercury (Hg) on Arctic biota in 2011 and 2018, there has been a considerable number of new Arctic bird studies. This review article provides contemporary Hg exposure and potential health risk for 36 Arctic seabird and shorebird species, representing a larger portion of the Arctic than during previous AMAP assessments now also including parts of the Russian Arctic. To assess risk to birds, we used Hg toxicity benchmarks established for blood and converted to egg, liver, and feather tissues. Several Arctic seabird populations showed Hg concentrations that exceeded toxicity benchmarks, with 50 % of individual birds exceeding the "no adverse health effect" level. In particular, 5 % of all studied birds were considered to be at moderate or higher risk to Hg toxicity. However, most seabirds (95 %) were generally at lower risk to Hg toxicity. The highest Hg contamination was observed in seabirds breeding in the western Atlantic and Pacific Oceans. Most Arctic shorebirds exhibited low Hg concentrations, with approximately 45 % of individuals categorized at no risk, 2.5 % at high risk category, and no individual at severe risk. Although the majority Arctic-breeding seabirds and shorebirds appeared at lower risk to Hg toxicity, recent studies have reported deleterious effects of Hg on some pituitary hormones, genotoxicity, and reproductive performance. Adult survival appeared unaffected by Hg exposure, although long-term banding studies incorporating Hg are still limited. Although Hg contamination across the Arctic is considered low for most bird species, Hg in combination with other stressors, including other contaminants, diseases, parasites, and climate change, may still cause adverse effects. Future investigations on the global impact of Hg on Arctic birds should be conducted within a multi-stressor framework. This information helps to address Article 22 (Effectiveness Evaluation) of the Minamata Convention on Mercury as a global pollutant.


Asunto(s)
Mercurio , Animales , Regiones Árticas , Aves , Monitoreo del Ambiente , Plumas/química , Humanos , Mercurio/análisis
5.
Curr Biol ; 31(17): 3964-3971.e3, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34520704

RESUMEN

Each winter, the North Atlantic Ocean is the stage for numerous cyclones, the most severe ones leading to seabird mass-mortality events called "winter wrecks."1-3 During these, thousands of emaciated seabird carcasses are washed ashore along European and North American coasts. Winter cyclones can therefore shape seabird population dynamics4,5 by affecting survival rates as well as the body condition of surviving individuals and thus their future reproduction. However, most often the geographic origins of impacted seabirds and the causes of their deaths remain unclear.6 We performed the first ocean-basin scale assessment of cyclone exposure in a seabird community by coupling winter tracking data for ∼1,500 individuals of five key North Atlantic seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia, and Rissa tridactyla) and cyclone locations. We then explored the energetic consequences of different cyclonic conditions using a mechanistic bioenergetics model7 and tested the hypothesis that cyclones dramatically increase seabird energy requirements. We demonstrated that cyclones of high intensity impacted birds from all studied species and breeding colonies during winter but especially those aggregating in the Labrador Sea, the Davis Strait, the surroundings of Iceland, and the Barents Sea. Our broad-scale analyses suggested that cyclonic conditions do not increase seabird energy requirements, implying that they die because of the unavailability of their prey and/or their inability to feed during cyclones. Our study provides essential information on seabird cyclone exposure in a context of marked cyclone regime changes due to global warming.8.


Asunto(s)
Charadriiformes , Tormentas Ciclónicas , Animales , Océano Atlántico , Aves , Humanos , Estaciones del Año
6.
PLoS One ; 14(8): e0219986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31386672

RESUMEN

We present the first study to examine the year-round distribution, activity patterns, and habitat use of one of New Zealand's most common seabirds, the fluttering shearwater (Puffinus gavia). Seven adults from Burgess Island, in the Hauraki Gulf, and one individual from Long Island, in the Marlborough Sounds, were successfully tracked with combined light-saltwater immersion loggers for one to three years. Our tracking data confirms that fluttering shearwaters employ different overwintering dispersal strategies, where three out of eight individuals, for at least one of the three years when they were being tracked, crossed the Tasman Sea to forage over coastal waters along eastern Tasmania and southeastern Australia. Resident birds stayed confined to waters of northern and central New Zealand year-round. Although birds frequently foraged over pelagic shelf waters, the majority of tracking locations were found over shallow waters close to the coast. All birds foraged predominantly in daylight and frequently visited the colony at night throughout the year. We found no significant inter-seasonal differences in the activity patterns, or between migratory and resident individuals. Although further studies of inter-colony variation in different age groups will be necessary, this study presents novel insights into year-round distribution, activity patterns and habitat use of the fluttering shearwater, which provide valuable baseline information for conservation as well as for further ecological studies.


Asunto(s)
Aves , Ecosistema , Migración Animal , Animales , Conservación de los Recursos Naturales , Estaciones del Año
7.
Elife ; 82019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31767056

RESUMEN

The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.


Asunto(s)
Charadriiformes/genética , ADN Antiguo/análisis , Extinción Biológica , Dinámica Poblacional , Animales , ADN Mitocondrial , Variación Genética , Genoma Mitocondrial/genética , Humanos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA