Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(22): E2319-28, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843127

RESUMEN

Insulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of ß-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying ß-cell dysfunction leading to hyperproinsulinemia is poorly understood. Here, we show that disruption of insulin receptor (IR) expression in ß cells has a direct impact on the expression of the convertase enzyme carboxypeptidase E (CPE) by inhibition of the eukaryotic translation initiation factor 4 gamma 1 translation initiation complex scaffolding protein that is mediated by the key transcription factors pancreatic and duodenal homeobox 1 and sterol regulatory element-binding protein 1, together leading to poor proinsulin processing. Reexpression of IR or restoring CPE expression each independently reverses the phenotype. Our results reveal the identity of key players that establish a previously unknown link between insulin signaling, translation initiation, and proinsulin processing, and provide previously unidentified mechanistic insight into the development of hyperproinsulinemia in insulin-resistant states.


Asunto(s)
Carboxipeptidasa H/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Animales , Carboxipeptidasa H/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Estrés del Retículo Endoplásmico/fisiología , Factor 4G Eucariótico de Iniciación/genética , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas/fisiología , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transactivadores/metabolismo
2.
Cell Metab ; 4(3): 245-54, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16950141

RESUMEN

In pancreatic beta cells, the endoplasmic reticulum (ER) is an important site for insulin biosynthesis and the folding of newly synthesized proinsulin. Here, we show that IRE1alpha, an ER-resident protein kinase, has a crucial function in insulin biosynthesis. IRE1alpha phosphorylation is coupled to insulin biosynthesis in response to transient exposure to high glucose; inactivation of IRE1alpha signaling by siRNA or inhibition of IRE1alpha phosphorylation hinders insulin biosynthesis. IRE1 activation by high glucose does not accompany XBP-1 splicing and BiP dissociation but upregulates its target genes such as WFS1. Thus, IRE1 signaling activated by transient exposure to high glucose uses a unique subset of downstream components and has a beneficial effect on pancreatic beta cells. In contrast, chronic exposure of beta cells to high glucose causes ER stress and hyperactivation of IRE1, leading to the suppression of insulin gene expression. IRE1 signaling is therefore a potential target for therapeutic regulation of insulin biosynthesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Chaperón BiP del Retículo Endoplásmico , Regulación de la Expresión Génica/fisiología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Insulina/metabolismo , Secreción de Insulina , Proteínas de la Membrana/genética , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proinsulina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Ratas , Factores de Transcripción del Factor Regulador X , Transducción de Señal/fisiología , Estrés Fisiológico/metabolismo , Estrés Fisiológico/fisiopatología , Factores de Transcripción , Regulación hacia Arriba/fisiología , Proteína 1 de Unión a la X-Box
3.
Antioxid Redox Signal ; 9(12): 2335-44, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17894546

RESUMEN

Pancreatic beta-cells are specialized for the production and regulated secretion of insulin to control blood-glucose levels. Increasing evidence indicates that stress-signaling pathways emanating from the endoplasmic reticulum (ER) are important in the maintenance of beta-cell homeostasis. Under physiological conditions, ER stress signaling has beneficial effects on beta-cells. Timely and proper activation of ER stress signaling is crucial for generating the proper amount of insulin in proportion to the need for it. In contrast, chronic and strong activation of ER stress signaling has harmful effects, leading to beta-cell dysfunction and death. Therefore, to dissect the molecular mechanisms of beta-cell failure and death in diabetes, it is necessary to understand the complex network of ER stress-signaling pathways. This review focuses on the function of the ER stress-signaling network in pancreatic beta-cells.


Asunto(s)
Retículo Endoplásmico/fisiología , Células Secretoras de Insulina/fisiología , Páncreas/citología , Transducción de Señal , Estrés Fisiológico , Animales , Retículo Endoplásmico/metabolismo , Humanos , Modelos Biológicos , Páncreas/fisiología
4.
Curr Mol Med ; 6(1): 71-7, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16472114

RESUMEN

Increasing evidence suggests that stress signaling pathways emanating from the endoplasmic reticulum (ER) are important to the pathogenesis of both type 1 and type 2 diabetes. Recent observations indicate that ER stress signaling participates in maintaining the ER homeostasis of pancreatic beta-cells. Either a high level of ER stress or defective ER stress signaling in beta-cells may cause an imbalance in ER homeostasis and lead to beta-cell apoptosis and autoimmune response. In addition, it has been suggested that ER stress attributes to insulin resistance in patients with type 2 diabetes. It is necessary to study the relationship between ER stress and diabetes in order to develop new therapeutic approaches to diabetes based on drugs that block the ER stress-mediated cell-death pathway and insulin resistance.


Asunto(s)
Apoptosis , Autoinmunidad/inmunología , Diabetes Mellitus/inmunología , Diabetes Mellitus/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Humanos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/patología
5.
Autoimmunity ; 44(2): 137-48, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20695765

RESUMEN

The adipokine, leptin, regulates blood glucose and the insulin secretory function of beta cells, while also modulating immune cell function. We hypothesized that the dual effects of leptin may prevent or suppress the autoreactive destruction of beta cells in a virally induced rodent model of type 1 diabetes. Nearly 100% of weanling BBDR rats treated with the combination of an innate immune system activator, polyinosinic:polycytidylic acid (pIC), and Kilham rat virus (KRV) become diabetic within a predictable time frame. We utilized this model to test the efficacy of leptin in preventing diabetes onset, remitting new onset disease, and preventing autoimmune recurrence in diabetic rats transplanted with syngeneic islet grafts. High doses of leptin delivered via an adenovirus vector (AdLeptin) or alzet pump prevented diabetes in>90% of rats treated with pIC+KRV. The serum hyperleptinemia generated by this treatment was associated with decreased body weight, decreased non-fasting serum insulin levels, and lack of islet insulitis in leptin-treated rats. In new onset diabetics, hyperleptinemia prevented rapid weight loss and diabetic ketoacidosis, and temporarily restored euglycemia. Leptin treatment also prolonged the survival of syngeneic islets transplanted into diabetic BBDR rats. In diverse therapeutic settings, we found leptin treatment to have significant beneficial effects in modulating virally induced diabetes. These findings merit further evaluation of leptin as a potential adjunct therapeutic agent for treatment of human type 1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Leptina/uso terapéutico , Infecciones por Parvoviridae/inmunología , Parvovirus/inmunología , Animales , Glucemia , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/virología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/virología , Cetoacidosis Diabética/prevención & control , Humanos , Trasplante de Islotes Pancreáticos , Leptina/administración & dosificación , Leptina/inmunología , Infecciones por Parvoviridae/virología , Poli I-C/administración & dosificación , Poli I-C/inmunología , Ratas , Ratas Endogámicas BB , Resultado del Tratamiento
6.
PLoS One ; 5(3): e9575, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20221394

RESUMEN

BACKGROUND: Angiogenesis is crucial to many physiological and pathological processes including development and cancer cell survival. Vascular endothelial growth factor-A (VEGFA) is the predominant mediator of angiogenesis in the VEGF family. During development, adverse environmental conditions like nutrient deprivation, hypoxia and increased protein secretion occur. IRE1alpha, PERK, and ATF6alpha, master regulators of the unfolded protein response (UPR), are activated under these conditions and are proposed to have a role in mediating angiogenesis. PRINCIPAL FINDINGS: Here we show that IRE1alpha, PERK, and ATF6alpha powerfully regulate VEGFA mRNA expression under various stress conditions. In Ire1alpha(-/-) and Perk(-/-) mouse embryonic fibroblasts and ATF6alpha-knockdown HepG2 cells, induction of VEGFA mRNA by endoplasmic reticulum stress is attenuated as compared to control cells. Embryonic lethality of Ire1alpha-/- mice is due to the lack of VEGFA induction in labyrinthine trophoblast cells of the developing placenta. Rescue of IRE1alpha and PERK in Ire1alpha(-/-) and Perk(-/-) cells respectively, prevents VEGFA mRNA attenuation. We further report that the induction of VEGFA by IRE1alpha, PERK and ATF6 involves activation of transcription factors, spliced-XBP-1, ATF4 and cleaved ATF6 respectively. CONCLUSIONS/SIGNIFICANCE: Our results reveal that the IRE1alpha-XBP-1, PERK-ATF4, and ATF6alpha pathways constitute novel upstream regulatory pathways of angiogenesis by modulating VEGF transcription. Activation of these pathways helps the rapidly growing cells to obtain sufficient nutrients and growth factors for their survival under the prevailing hostile environmental conditions. These results establish an important role of the UPR in angiogenesis.


Asunto(s)
Regulación de la Expresión Génica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Transcripción Activador 6/metabolismo , Empalme Alternativo , Animales , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box , eIF-2 Quinasa/metabolismo
7.
J Clin Invest ; 120(3): 744-55, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20160352

RESUMEN

Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada , Síndrome de Wolfram/metabolismo , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Células COS , Proteínas de Unión a Calmodulina/genética , Línea Celular Tumoral , Chlorocebus aethiops , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Regulación de la Expresión Génica/genética , Humanos , Células Secretoras de Insulina/patología , Proteínas de la Membrana/genética , Ratones , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Transactivadores/genética , Transactivadores/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética , Síndrome de Wolfram/genética , Síndrome de Wolfram/patología
8.
PLoS One ; 5(7): e11812, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20676397

RESUMEN

The centrosome is important for microtubule organization and cell cycle progression in animal cells. Recently, mutations in the centrosomal protein, pericentrin, have been linked to human microcephalic osteodysplastic primordial dwarfism (MOPD II), a rare genetic disease characterized by severe growth retardation and early onset of type 2 diabetes among other clinical manifestations. While the link between centrosomal and cell cycle defects may account for growth deficiencies, the mechanism linking pericentrin mutations with dysregulated glucose homeostasis and pre-pubertal onset of diabetes is unknown. In this report we observed abundant expression of pericentrin in quiescent pancreatic beta-cells of normal animals which led us to hypothesize that pericentrin may have a critical function in beta-cells distinct from its known role in regulating cell cycle progression. In addition to the typical centrosome localization, pericentrin was also enriched with secretory vesicles in the cytoplasm. Pericentrin overexpression in beta-cells resulted in aggregation of insulin-containing secretory vesicles with cytoplasmic, but not centrosomal, pericentriolar material and an increase in total levels of intracellular insulin. RNAi- mediated silencing of pericentrin in secretory beta-cells caused dysregulated secretory vesicle hypersecretion of insulin into the media. Together, these data suggest that pericentrin may regulate the intracellular distribution and secretion of insulin. Mice transplanted with pericentrin-depleted islets exhibited abnormal fasting hypoglycemia and inability to regulate blood glucose normally during a glucose challenge, which is consistent with our in vitro data. This previously unrecognized function for a centrosomal protein to mediate vesicle docking in secretory endocrine cells emphasizes the adaptability of these scaffolding proteins to regulate diverse cellular processes and identifies a novel target for modulating regulated protein secretion in disorders such as diabetes.


Asunto(s)
Antígenos/metabolismo , Centrosoma/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Vesículas Secretoras/metabolismo , Animales , Antígenos/genética , Línea Celular Tumoral , Femenino , Técnica del Anticuerpo Fluorescente , Células Secretoras de Insulina/ultraestructura , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , ARN Interferente Pequeño/genética , Radioinmunoensayo , Vesículas Secretoras/ultraestructura
9.
PLoS One ; 4(5): e5468, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19424493

RESUMEN

Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5(-/-) BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5(-/-) T cells. Knockdown of CHOP by siRNA protected Gimap5(-/-) T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells.


Asunto(s)
Apoptosis , Retículo Endoplásmico/patología , Proteínas de Unión al GTP/deficiencia , Estrés Fisiológico , Linfocitos T/citología , Linfocitos T/metabolismo , Factor de Transcripción CHOP/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Supervivencia Celular , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/metabolismo , Activación de Linfocitos , Chaperonas Moleculares/metabolismo , Ratas , Transducción de Señal , Timo/metabolismo
10.
PLoS One ; 3(2): e1648, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18286202

RESUMEN

BACKGROUND: The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1alpha is a central component of the UPR. In pancreatic beta-cells, IRE1alpha also functions in the regulation of insulin biosynthesis. PRINCIPAL FINDINGS: Here we report that hyperactivation of IRE1alpha caused by chronic high glucose treatment or IRE1alpha overexpression leads to insulin mRNA degradation in pancreatic beta-cells. Inhibition of IRE1alpha signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1alpha retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates. CONCLUSIONS/SIGNIFICANCE: These results reveal a role of IRE1alpha in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of beta-cell homeostasis and may explain why the beta-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of "neo-autoantigens."


Asunto(s)
Endorribonucleasas/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN Mensajero/metabolismo , Animales , Glucemia/fisiología , Células Cultivadas , Ratones , Pliegue de Proteína , Ratas , Transducción de Señal
11.
J Biol Chem ; 280(47): 39609-15, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16195229

RESUMEN

In Wolfram syndrome, a rare form of juvenile diabetes, pancreatic beta-cell death is not accompanied by an autoimmune response. Although it has been reported that mutations in the WFS1 gene are responsible for the development of this syndrome, the precise molecular mechanisms underlying beta-cell death caused by the WFS1 mutations remain unknown. Here we report that WFS1 is a novel component of the unfolded protein response and has an important function in maintaining homeostasis of the endoplasmic reticulum (ER) in pancreatic beta-cells. WFS1 encodes a transmembrane glyco-protein in the ER. WFS1 mRNA and protein are induced by ER stress. The expression of WFS1 is regulated by inositol requiring 1 and PKR-like ER kinase, central regulators of the unfolded protein response. WFS1 is normally up-regulated during insulin secretion, whereas inactivation of WFS1 in beta-cells causes ER stress and beta-cell dysfunction. These results indicate that the pathogenesis of Wolfram syndrome involves chronic ER stress in pancreatic beta-cells caused by the loss of function of WFS1.


Asunto(s)
Retículo Endoplásmico/fisiología , Células Secretoras de Insulina/fisiología , Proteínas de la Membrana/fisiología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Endorribonucleasas , Homeostasis , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Modelos Biológicos , Mutación , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transducción de Señal , Síndrome de Wolfram/etiología
12.
Biochem Biophys Res Commun ; 324(1): 166-70, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15464997

RESUMEN

Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins in the ER, elicits an adaptive response, the unfolded protein response (UPR). One component of the UPR, the endoplasmic reticulum-associated protein degradation (ERAD) system, has an important function in the survival of ER stressed cells. Here, we show that HRD1, a component of the ERAD system, is upregulated in pancreatic islets of the Akita diabetes mouse model and enhances intracellular degradation of misfolded insulin. High ER stress in beta-cells stimulated mutant insulin degradation through HRD1 to protect beta-cells from ER stress and ensuing death. If HRD1 serves the same function in humans, it may serve as a target for therapeutic intervention in diabetes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Insulina/química , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Humanos , Islotes Pancreáticos/citología , Ratones , Ratones Endogámicos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA