RESUMEN
The human heart is poorly regenerative and cardiac tumors are extremely rare. Whether the adult zebrafish myocardium is responsive to oncogene overexpression and how this condition affects its intrinsic regenerative capacity remains unknown. Here, we have established a strategy of inducible and reversible expression of HRASG12V in zebrafish cardiomyocytes. This approach stimulated a hyperplastic cardiac enlargement within 16â days. The phenotype was suppressed by rapamycin-mediated inhibition of TOR signaling. As TOR signaling is also required for heart restoration after cryoinjury, we compared transcriptomes of hyperplastic and regenerating ventricles. Both conditions were associated with upregulation of cardiomyocyte dedifferentiation and proliferation factors, as well as with similar microenvironmental responses, such as deposition of nonfibrillar Collagen XII and recruitment of immune cells. Among the differentially expressed genes, many proteasome and cell-cycle regulators were upregulated only in oncogene-expressing hearts. Preconditioning of the heart with short-term oncogene expression accelerated cardiac regeneration after cryoinjury, revealing a beneficial synergism between both programs. Identification of the molecular bases underlying the interplay between detrimental hyperplasia and advantageous regeneration provides new insights into cardiac plasticity in adult zebrafish.
Asunto(s)
Oncogenes , Pez Cebra , Adulto , Humanos , Animales , Pez Cebra/genética , Hiperplasia , Oncogenes/genética , Miocitos Cardíacos , Ventrículos CardíacosRESUMEN
Dendritic cells (DC) and monocytes are vital for the initiation of innate and adaptive immune responses. Recently, we identified bona fide DC subsets in blood of cattle, revealing subset- and species-specific transcription of toll-like receptors (TLR). In the present study, we analyzed phenotypic and transcriptional responses of bovine DC subsets and monocytes to in vitro stimulation with four to six different TLR ligands. Bovine DC subsets, especially plasmacytoid DC (pDC), showed a clear increase of CCR7, CD25, CD40, CD80, CD86, and MHC-II expression both on mRNA and protein level. Flow cytometric detection of p38 MAPK phosphorylation 15 min after stimulation confirmed activation of DC subsets and monocytes in accordance with TLR gene expression. Whole-transcriptome sequencing of sorted and TLR-stimulated subsets revealed potential ligand- and subset-specific regulation of genes associated with inflammation, T-cell co-stimulation, migration, metabolic reprogramming, and antiviral activity. Gardiquimod was found to evoke strong responses both in DC subsets and monocytes, while Poly(I:C) and CpG preferentially triggered responses in cDC1 and pDC, respectively. This in-depth analysis of ligand responsiveness is essential for the rational design of vaccine adjuvants in cattle, and provides a solid basis for comparative studies on DC and monocyte biology across species.
Asunto(s)
Células Sanguíneas/metabolismo , Células Dendríticas/fisiología , Monocitos/fisiología , Receptores Toll-Like/metabolismo , Transcriptoma/fisiología , Animales , Antígenos CD/metabolismo , Células Sanguíneas/fisiología , Bovinos , Movimiento Celular/fisiología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica/métodos , Inflamación/metabolismo , Inflamación/patología , Ligandos , Monocitos/metabolismoRESUMEN
Polyploidization is pervasive in plants, but little is known about the niche divergence of wild allopolyploids (species that harbor polyploid genomes originating from different diploid species) relative to their diploid progenitor species and the gene expression patterns that may underlie such ecological divergence. We conducted a fine-scale empirical study on habitat and gene expression of an allopolyploid and its diploid progenitors. We quantified soil properties and light availability of habitats of an allotetraploid Cardamine flexuosa and its diploid progenitors Cardamine amara and Cardamine hirsuta in two seasons. We analyzed expression patterns of genes and homeologs (homeologous gene copies in allopolyploids) using RNA sequencing. We detected niche divergence between the allopolyploid and its diploid progenitors along water availability gradient at a fine scale: the diploids in opposite extremes and the allopolyploid in a broader range between diploids, with limited overlap with diploids at both ends. Most of the genes whose homeolog expression ratio changed among habitats in C. flexuosa varied spatially and temporally. These findings provide empirical evidence for niche divergence between an allopolyploid and its diploid progenitor species at a fine scale and suggest that divergent expression patterns of homeologs in an allopolyploid may underlie its persistence in diverse habitats.
Asunto(s)
Cardamine , Diploidia , Ecosistema , PoliploidíaRESUMEN
Darwinian evolution preferentially follows mutational pathways whose individual steps increase fitness. Alternative pathways with mutational steps that do not increase fitness are less accessible. Here, we show that mistranslation, the erroneous incorporation of amino acids into nascent proteins, can increase the accessibility of such alternative pathways and, ultimately, of high fitness genotypes. We subject populations of the beta-lactamase TEM-1 to directed evolution in Escherichia coli under both low- and high-mistranslation rates, selecting for high activity on the antibiotic cefotaxime. Under low mistranslation rates, different evolving TEM-1 populations ascend the same high cefotaxime-resistance peak, which requires three canonical DNA mutations. In contrast, under high mistranslation rates they ascend three different high cefotaxime-resistance genotypes, which leads to higher genotypic diversity among populations. We experimentally reconstruct the adaptive DNA mutations and the potential evolutionary paths to these high cefotaxime-resistance genotypes. This reconstruction shows that some of the DNA mutations do not change fitness under low mistranslation, but cause a significant increase in fitness under high-mistranslation, which helps increase the accessibility of different high cefotaxime-resistance genotypes. In addition, these mutations form a network of pairwise epistatic interactions that leads to mutually exclusive evolutionary trajectories towards different high cefotaxime-resistance genotypes. Our observations demonstrate that protein mistranslation and the phenotypic mutations it causes can alter the evolutionary exploration of fitness landscapes and reduce the predictability of evolution.
Asunto(s)
Evolución Molecular , Modelos Genéticos , Antibacterianos , Cefotaxima/farmacología , Epistasis Genética , Escherichia coli/genética , MutaciónRESUMEN
BACKGROUND: The development of next-generation sequencing has made it possible to sequence whole genomes at a relatively low cost. However, de novo genome assemblies remain challenging due to short read length, missing data, repetitive regions, polymorphisms and sequencing errors. As more and more genomes are sequenced, reference-guided assembly approaches can be used to assist the assembly process. However, previous methods mostly focused on the assembly of other genotypes within the same species. We adapted and extended a reference-guided de novo assembly approach, which enables the usage of a related reference sequence to guide the genome assembly. In order to compare and evaluate de novo and our reference-guided de novo assembly approaches, we used a simulated data set of a repetitive and heterozygotic plant genome. RESULTS: The extended reference-guided de novo assembly approach almost always outperforms the corresponding de novo assembly program even when a reference of a different species is used. Similar improvements can be observed in high and low coverage situations. In addition, we show that a single evaluation metric, like the widely used N50 length, is not enough to properly rate assemblies as it not always points to the best assembly evaluated with other criteria. Therefore, we used the summed z-scores of 36 different statistics to evaluate the assemblies. CONCLUSIONS: The combination of reference mapping and de novo assembly provides a powerful tool to improve genome reconstruction by integrating information of a related genome. Our extension of the reference-guided de novo assembly approach enables the application of this strategy not only within but also between related species. Finally, the evaluation of genome assemblies is often not straight forward, as the truth is not known. Thus one should always use a combination of evaluation metrics, which not only try to assess the continuity but also the accuracy of an assembly.
Asunto(s)
Genoma de Planta , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Arabidopsis/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Especificidad de la EspecieRESUMEN
BACKGROUND: The purpose of gene set enrichment analysis (GSEA) is to find general trends in the huge lists of genes or proteins generated by many functional genomics techniques and bioinformatics analyses. RESULTS: Here we present SetRank, an advanced GSEA algorithm which is able to eliminate many false positive hits. The key principle of the algorithm is that it discards gene sets that have initially been flagged as significant, if their significance is only due to the overlap with another gene set. The algorithm is explained in detail and its performance is compared to that of other methods using objective benchmarking criteria. Furthermore, we explore how sample source bias can affect the results of a GSEA analysis. CONCLUSIONS: The benchmarking results show that SetRank is a highly specific tool for GSEA. Furthermore, we show that the reliability of results can be improved by taking sample source bias into account. SetRank is available as an R package and through an online web interface.
Asunto(s)
Algoritmos , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Encéfalo/metabolismo , Genoma Humano , Genómica , Humanos , Modelos Teóricos , Neoplasias/genética , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.
Asunto(s)
Arvicolinae/genética , Especiación Genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Teorema de Bayes , Evolución Molecular , Haplotipos , Heterocigoto , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido SimpleRESUMEN
In contrast to mammals, zebrafish can regenerate their damaged photoreceptors. This capacity depends on the intrinsic plasticity of Müller glia (MG). Here, we identified that the transgenic reporter careg, a marker of regenerating fin and heart, also participates in retina restoration in zebrafish. After methylnitrosourea (MNU) treatment, the retina became deteriorated and contained damaged cell types including rods, UV-sensitive cones and the outer plexiform layer. This phenotype was associated with the induction of careg expression in a subset of MG until the reconstruction of the photoreceptor synaptic layer. Single-cell RNA sequencing (scRNAseq) analysis of regenerating retinas revealed a population of immature rods, defined by high expression of rhodopsin and the ciliogenesis gene meig1, but low expression of phototransduction genes. Furthermore, cones displayed deregulation of metabolic and visual perception genes in response to retina injury. Comparison between careg:EGFP expressing and non-expressing MG demonstrated that these two subpopulations are characterized by distinct molecular signatures, suggesting their heterogenous responsiveness to the regenerative program. Dynamics of ribosomal protein S6 phosphorylation showed that TOR signaling became progressively switched from MG to progenitors. Inhibition of TOR with rapamycin reduced the cell cycle activity, but neither affected careg:EGFP expression in MG, nor prevented restoration of the retina structure. This indicates that MG reprogramming, and progenitor cell proliferation might be regulated by distinct mechanisms. In conclusion, the careg reporter detects activated MG, and provides a common marker of regeneration-competent cells in diverse zebrafish organs, including the retina.
RESUMEN
The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species Sepsis cynipsea and S. neocynipsea (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA-BABA test with D-statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11692-023-09612-5.
RESUMEN
Cephalopods are set apart from other mollusks by their advanced behavioral abilities and the complexity of their nervous systems. Because of the great evolutionary distance that separates vertebrates from cephalopods, it is evident that higher cognitive features have evolved separately in these clades despite the similarities that they share. Alongside their complex behavioral abilities, cephalopods have evolved specialized cells and tissues, such as the chromatophores for camouflage or suckers to grasp prey. Despite significant progress in genome and transcriptome sequencing, the molecular identities of cell types in cephalopods remain largely unknown. We here combine single-cell transcriptomics with in situ gene expression analysis to uncover cell type diversity in the European squid Loligo vulgaris. We describe cell types that are conserved with other phyla such as neurons, muscles, or connective tissues but also cephalopod-specific cells, such as chromatophores or sucker cells. Moreover, we investigate major components of the squid nervous system including progenitor and developing cells, differentiated cells of the brain and optic lobes, as well as sensory systems of the head. Our study provides a molecular assessment for conserved and novel cell types in cephalopods and a framework for mapping the nervous system of L. vulgaris.
Asunto(s)
Cefalópodos , Cromatóforos , Loligo , Animales , Decapodiformes/genética , Loligo/fisiología , Moluscos/fisiología , Cefalópodos/genética , Cromatóforos/fisiologíaRESUMEN
Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM.
Asunto(s)
Presentación de Antígeno , Monocitos , Animales , Antivirales/metabolismo , Biología , Bovinos , Diferenciación Celular , HumanosRESUMEN
Identifying local adaptation in bottlenecked species is essential for conservation management. Selection detection methods have an important role in species management plans, assessments of adaptive capacity, and looking for responses to climate change. Yet, the allele frequency changes exploited in selection detection methods are similar to those caused by the strong neutral genetic drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection detection methods have across bottlenecked populations. In this study, simulations were used to explore if signals of selection could be confidently distinguished from genetic drift across 23 bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). The meticulously recorded demographic history of the Alpine ibex was used to generate comprehensive simulated SNP data. The simulated SNPs were then used to benchmark the confidence we could place in outliers identified in empirical Alpine ibex RADseq derived SNP data. Within the simulated data set, the false positive rates were high for all selection detection methods (FST outlier scans and Genetic-Environment Association analyses) but fell substantially when two or more methods were combined. True positive rates were consistently low and became negligible with increased stringency. Despite finding many outlier loci in the empirical Alpine ibex SNPs, none could be distinguished from genetic drift-driven false positives. Unfortunately, the low true positive rate also prevents the exclusion of recent local adaptation within the Alpine ibex. The baselines and stringent approach outlined here should be applied to other bottlenecked species to ensure the risk of false positive, or negative, signals of selection are accounted for in conservation management plans.
Asunto(s)
Flujo Genético , Genética de Población , Animales , Frecuencia de los Genes , CabrasRESUMEN
In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process.
RESUMEN
Myeloproliferative neoplasms (MPN) show dysregulated JAK2 signaling. JAK2 inhibitors provide clinical benefits, but compensatory activation of MAPK pathway signaling impedes efficacy. We hypothesized that dual targeting of JAK2 and ERK1/2 could enhance clone control and therapeutic efficacy. We employed genetic and pharmacologic targeting of ERK1/2 in Jak2V617F MPN mice, cells and patient clinical isolates. Competitive transplantations of Jak2V617F vs. wild-type bone marrow (BM) showed that ERK1/2 deficiency in hematopoiesis mitigated MPN features and reduced the Jak2V617F clone in blood and hematopoietic progenitor compartments. ERK1/2 ablation combined with JAK2 inhibition suppressed MAPK transcriptional programs, normalized cytoses and promoted clone control suggesting dual JAK2/ERK1/2 targeting as enhanced corrective approach. Combined pharmacologic JAK2/ERK1/2 inhibition with ruxolitinib and ERK inhibitors reduced proliferation of Jak2V617F cells and corrected erythrocytosis and splenomegaly of Jak2V617F MPN mice. Longer-term treatment was able to induce clone reductions. BM fibrosis was significantly decreased in MPLW515L-driven MPN to an extent not seen with JAK2 inhibitor monotherapy. Colony formation from JAK2V617F patients' CD34+ blood and BM was dose-dependently inhibited by combined JAK2/ERK1/2 inhibition in PV, ET, and MF subsets. Overall, we observed that dual targeting of JAK2 and ERK1/2 was able to enhance therapeutic efficacy suggesting a novel treatment approach for MPN.
Asunto(s)
Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Janus Quinasa 2/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Trastornos Mieloproliferativos/tratamiento farmacológico , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Proliferación Celular , Femenino , Humanos , Janus Quinasa 2/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patologíaRESUMEN
Background: Canine intervertebral disc disease (IVDD) represents a significant clinical problem in veterinary medicine, with similarities to the human pathology. Host-derived damage-associated molecular patterns like fibronectin fragments (FnF) that develop during tissue dysfunction may be of specific relevance to IVD pathologies by inducing an inflammatory response in resident cells. Aim: This project aimed to determine the presence and pathobiological role of FnF during IVD herniation in dogs, with a focus on inflammation. Methods: Herniated nucleus pulposus (NP) material from five dogs as well as non-herniated adjacent NP material from three dogs was collected during spinal surgery required due to acute IVD herniation. The presence of different types of FnF were determined by Western blot analysis. NP cells isolated from six herniated canine IVDs were then exposed to 30 kDa FnF. NP cell inflammation and catabolism was examined by investigating the expression of IL-1ß, IL-6, IL-8, and COX-2, as well as MMP-1 and MMP-3 by qPCR (all targets) and ELISA (IL-6, PGE2). Results: Amongst multiple sized FnF (30, 35, 45, and >170kDa), N-terminal fragments at a size of ~30 kDa were most consistently expressed in all five herniated IVDs. Importantly, these fragments were exclusively present in herniated, but not in non-herniated IVDs. Exposure of canine NP cells to 500 nM 30 kDa FnF caused a significant upregulation of IL-6 (62.5 ± 79.9, p = 0.032) and IL-8 (53.0 ± 75.7, p = 0.031) on the gene level, whereas IL-6 protein analysis was inconclusive. Donor-donor variation was observed in response to FnF treatment, whereby this phenomenon was most evident for COX-2, with three donors demonstrating a significant downregulation (0.67 ± 0.03, p = 0.003) and three donors showing upregulation (6.9 ± 5.5, p = 0.21). Co-treatment with Sparstolonin B, a TRL-2/TRL-4 antagonist, showed no statistical difference to FnF treatment alone in all tested target genes. Conclusion: Given the presence of the 30 kDa FnF in canine herniated IVDs and the proinflammatory effect of 30 kDa FnF on NP cells, we concluded that the accumulation of FnF may be involved in the pathogenesis of canine IVDD. These results correspond to the findings in humans with IVDD.
RESUMEN
Genome duplication is widespread in wild and crop plants. However, little is known about genome-wide selection in polyploids due to the complexity of duplicated genomes. In polyploids, the patterns of purifying selection and adaptive substitutions may be affected by masking owing to duplicated genes or homeologs as well as effective population size. Here, we resequence 25 accessions of the allotetraploid Arabidopsis kamchatica, which is derived from the diploid species A. halleri and A. lyrata. We observe a reduction in purifying selection compared with the parental species. Interestingly, proportions of adaptive non-synonymous substitutions are significantly positive in contrast to most plant species. A recurrent pattern observed in both frequency and divergence-diversity neutrality tests is that the genome-wide distributions of both subgenomes are similar, but the correlation between homeologous pairs is low. This may increase the opportunity of different evolutionary trajectories such as in the HMA4 gene involved in heavy metal hyperaccumulation.
Asunto(s)
Arabidopsis/genética , Genoma de Planta/genética , Polimorfismo de Nucleótido Simple , Poliploidía , Selección Genética , Arabidopsis/clasificación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Desequilibrio de Ligamiento , Filogenia , Especificidad de la EspecieRESUMEN
The reconstruction of ancient metagenomes from archaeological material, and their implication in human health and evolution, is one of the most recent advances in paleomicrobiological studies. However, as for all ancient DNA (aDNA) studies, environmental and laboratory contamination need to be specifically addressed. Here we attempted to reconstruct the tissue-specific metagenomes of a 42,000-year-old, permafrost-preserved woolly mammoth calf through shotgun high-throughput sequencing. We analyzed the taxonomic composition of all tissue samples together with environmental and non-template experimental controls and compared them to metagenomes obtained from permafrost and elephant fecal samples. Preliminary results suggested the presence of tissue-specific metagenomic signals. We identified bacterial species that were present in only one experimental sample, absent from controls, and consistent with the nature of the samples. However, we failed to further authenticate any of these signals and conclude that, even when experimental samples are distinct from environmental and laboratory controls, this does not necessarily indicate endogenous presence of ancient host-associated microbiomic signals.
RESUMEN
We present here a new version of the Arlequin program available under three different forms: a Windows graphical version (Winarl35), a console version of Arlequin (arlecore), and a specific console version to compute summary statistics (arlsumstat). The command-line versions run under both Linux and Windows. The main innovations of the new version include enhanced outputs in XML format, the possibility to embed graphics displaying computation results directly into output files, and the implementation of a new method to detect loci under selection from genome scans. Command-line versions are designed to handle large series of files, and arlsumstat can be used to generate summary statistics from simulated data sets within an Approximate Bayesian Computation framework.