Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(1): 160-175.e27, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31155233

RESUMEN

Single-cell technologies have described heterogeneity across tissues, but the spatial distribution and forces that drive single-cell phenotypes have not been well defined. Combining single-cell RNA and protein analytics in studying the role of stromal cancer-associated fibroblasts (CAFs) in modulating heterogeneity in pancreatic cancer (pancreatic ductal adenocarcinoma [PDAC]) model systems, we have identified significant single-cell population shifts toward invasive epithelial-to-mesenchymal transition (EMT) and proliferative (PRO) phenotypes linked with mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling. Using high-content digital imaging of RNA in situ hybridization in 195 PDAC tumors, we quantified these EMT and PRO subpopulations in 319,626 individual cancer cells that can be classified within the context of distinct tumor gland "units." Tumor gland typing provided an additional layer of intratumoral heterogeneity that was associated with differences in stromal abundance and clinical outcomes. This demonstrates the impact of the stroma in shaping tumor architecture by altering inherent patterns of tumor glands in human PDAC.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Animales , Proliferación Celular , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Femenino , Células HEK293 , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Quinasas Activadas por Mitógenos/metabolismo , RNA-Seq , Factor de Transcripción STAT3/metabolismo , Células del Estroma/metabolismo , Transfección
2.
Gut ; 73(7): 1131-1141, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38429112

RESUMEN

OBJECTIVE: This study aims to validate the existence of a microbiome within intraductal papillary mucinous neoplasm (IPMN) that can be differentiated from the taxonomically diverse DNA background of next-generation sequencing procedures. DESIGN: We generated 16S rRNA amplicon sequencing data to analyse 338 cyst fluid samples from 190 patients and 19 negative controls, the latter collected directly from sterile syringes in the operating room. A subset of samples (n=20) and blanks (n=5) were spiked with known concentrations of bacterial cells alien to the human microbiome to infer absolute abundances of microbial traces. All cyst fluid samples were obtained intraoperatively and included IPMNs with various degrees of dysplasia as well as other cystic neoplasms. Follow-up culturing experiments were conducted to assess bacterial growth for microbiologically significant signals. RESULTS: Microbiome signatures of cyst fluid samples were inseparable from those of negative controls, with no difference in taxonomic diversity, and microbial community composition. In a patient subgroup that had recently undergone invasive procedures, a bacterial signal was evident. This outlier signal was not characterised by higher taxonomic diversity but by an increased dominance index of a gut-associated microbe, leading to lower taxonomic evenness compared with the background signal. CONCLUSION: The 'microbiome' of IPMNs and other pancreatic cystic neoplasms does not deviate from the background signature of negative controls, supporting the concept of a sterile environment. Outlier signals may appear in a small fraction of patients following recent invasive endoscopic procedures. No associations between microbial patterns and clinical or cyst parameters were apparent.


Asunto(s)
Microbiota , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , ARN Ribosómico 16S , Humanos , Masculino , Femenino , Neoplasias Pancreáticas/microbiología , Neoplasias Pancreáticas/patología , Anciano , Persona de Mediana Edad , Neoplasias Intraductales Pancreáticas/microbiología , Neoplasias Intraductales Pancreáticas/patología , Carcinoma Ductal Pancreático/microbiología , Carcinoma Ductal Pancreático/patología , Líquido Quístico/microbiología , Adenocarcinoma Mucinoso/microbiología , Adenocarcinoma Mucinoso/patología , Anciano de 80 o más Años , Páncreas/microbiología , Adulto
3.
Nature ; 558(7711): 600-604, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925948

RESUMEN

Malignancy is accompanied by changes in the metabolism of both cells and the organism1,2. Pancreatic ductal adenocarcinoma (PDAC) is associated with wasting of peripheral tissues, a metabolic syndrome that lowers quality of life and has been proposed to decrease survival of patients with cancer3,4. Tissue wasting is a multifactorial disease and targeting specific circulating factors to reverse this syndrome has been mostly ineffective in the clinic5,6. Here we show that loss of both adipose and muscle tissue occurs early in the development of pancreatic cancer. Using mouse models of PDAC, we show that tumour growth in the pancreas but not in other sites leads to adipose tissue wasting, suggesting that tumour growth within the pancreatic environment contributes to this wasting phenotype. We find that decreased exocrine pancreatic function is a driver of adipose tissue loss and that replacement of pancreatic enzymes attenuates PDAC-associated wasting of peripheral tissues. Paradoxically, reversal of adipose tissue loss impairs survival in mice with PDAC. When analysing patients with PDAC, we find that depletion of adipose and skeletal muscle tissues at the time of diagnosis is common, but is not associated with worse survival. Taken together, these results provide an explanation for wasting of adipose tissue in early PDAC and suggest that early loss of peripheral tissue associated with pancreatic cancer may not impair survival.


Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Insuficiencia Pancreática Exocrina/etiología , Insuficiencia Pancreática Exocrina/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/patología , Animales , Composición Corporal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Pancreática Exocrina/patología , Femenino , Masculino , Ratones , Neoplasias Pancreáticas/metabolismo
4.
Gastroenterology ; 160(4): 1345-1358.e11, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33301777

RESUMEN

BACKGROUND AND AIMS: Advances in cross-sectional imaging have resulted in increased detection of intraductal papillary mucinous neoplasms (IPMNs), and their management remains controversial. At present, there is no reliable noninvasive method to distinguish between indolent and high risk IPMNs. We performed extracellular vesicle (EV) analysis to identify markers of malignancy in an attempt to better stratify these lesions. METHODS: Using a novel ultrasensitive digital extracellular vesicle screening technique (DEST), we measured putative biomarkers of malignancy (MUC1, MUC2, MUC4, MUC5AC, MUC6, Das-1, STMN1, TSP1, TSP2, EGFR, EpCAM, GPC1, WNT-2, EphA2, S100A4, PSCA, MUC13, ZEB1, PLEC1, HOOK1, PTPN6, and FBN1) in EV from patient-derived cell lines and then on circulating EV obtained from peripheral blood drawn from patients with IPMNs. We enrolled a total of 133 patients in two separate cohorts: a clinical discovery cohort (n = 86) and a validation cohort (n = 47). RESULTS: From 16 validated EV proteins in plasma samples collected from the discovery cohort, only MUC5AC showed significantly higher levels in high-grade lesions. Of the 11 patients with invasive IPMN (inv/HG), 9 had high MUC5AC expression in plasma EV of the 11 patients with high-grade dysplasia alone, only 1 had high MUC5AC expression (sensitivity of 82%, specificity of 100%). These findings were corroborated in a separate validation cohort. The addition of MUC5AC as a biomarker to imaging and high-riskstigmata allowed detection of all cases requiring surgery, whereas imaging and high-risk stigmata alone would have missed 5 of 14 cases (36%). CONCLUSIONS: MUC5AC in circulating EV can predict the presence of invasive carcinoma within IPMN. This approach has the potential to improve the management and follow-up of patients with IPMN including avoiding unnecessary surgery.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/diagnóstico , Vesículas Extracelulares/metabolismo , Neoplasias Intraductales Pancreáticas/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/patología , Diagnóstico Diferencial , Femenino , Voluntarios Sanos , Humanos , Biopsia Líquida/métodos , Masculino , Ratones , Persona de Mediana Edad , Mucina 5AC/sangre , Mucina 5AC/metabolismo , Invasividad Neoplásica/patología , Conductos Pancreáticos/diagnóstico por imagen , Conductos Pancreáticos/patología , Neoplasias Intraductales Pancreáticas/sangre , Neoplasias Intraductales Pancreáticas/patología , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/patología , Prueba de Estudio Conceptual , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Proc Natl Acad Sci U S A ; 116(52): 26835-26845, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843922

RESUMEN

Transcriptional profiling has defined pancreatic ductal adenocarcinoma (PDAC) into distinct subtypes with the majority being classical epithelial (E) or quasi-mesenchymal (QM). Despite clear differences in clinical behavior, growing evidence indicates these subtypes exist on a continuum with features of both subtypes present and suggestive of interconverting cell states. Here, we investigated the impact of different therapies being evaluated in PDAC on the phenotypic spectrum of the E/QM state. We demonstrate using RNA-sequencing and RNA-in situ hybridization (RNA-ISH) that FOLFIRINOX combination chemotherapy induces a common shift of both E and QM PDAC toward a more QM state in cell lines and patient tumors. In contrast, Vitamin D, another drug under clinical investigation in PDAC, induces distinct transcriptional responses in each PDAC subtype, with augmentation of the baseline E and QM state. Importantly, this translates to functional changes that increase metastatic propensity in QM PDAC, but decrease dissemination in E PDAC in vivo models. These data exemplify the importance of both the initial E/QM subtype and the plasticity of E/QM states in PDAC in influencing response to therapy, which highlights their relevance in guiding clinical trials.

6.
Angiogenesis ; 23(3): 479-492, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32444947

RESUMEN

INTRODUCTION: The inhibition of Hedgehog (Hh) signaling in pancreatic ductal adenocarcinoma (PDAC) reduces desmoplasia and promotes increased vascularity. In contrast to these findings, the Hh ligand Sonic Hedgehog (SHH) is a potent proangiogenic factor in non-tumor models. The aim of this study was to determine the molecular mechanisms by which SHH affects the tumor stroma and angiogenesis. METHODS: Mice bearing three different xenografted human PDAC (n = 5/group) were treated with neutralizing antibodies to SHH. After treatment for 7 days, tumors were evaluated and the expression of 38 pro- and antiangiogenic factors was assessed in the tumor cells and their stroma. The effect of SHH on the regulation of pro- and antiangiogenic factors in fibroblasts and its impact on endothelial cells was then further assessed in in vitro model systems. RESULTS: Inhibition of SHH affected tumor growth, stromal content, and vascularity. Its effect on the Hh signaling pathway was restricted to the stromal compartment of the three cancers. SHH-stimulated angiogenesis indirectly through the reduction of antiangiogenic THBS2 and TIMP2 in stromal cells. An additional direct effect of SHH on endothelial cells depended on the presence of VEGF. CONCLUSION: Inhibition of Hh signaling reduces tumor vascularity, suggesting that Hh plays a role in the maintenance or formation of the tumor vasculature. Whether the reduction in tumor growth and viability seen in the epithelium is a direct consequence of Hh pathway inhibition, or indirectly caused by its effect on the stroma and vasculature, remains to be evaluated.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Hedgehog/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica , Neoplasias Pancreáticas , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/irrigación sanguínea , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias Pancreáticas/irrigación sanguínea , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
7.
J Transl Med ; 18(1): 255, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32580742

RESUMEN

BACKGROUND: Patient-derived xenograft (PDX) mouse models of cancer have been recognized as better mouse models that recapitulate the characteristics of original malignancies including preserved tumor heterogeneity, lineage hierarchy, and tumor microenvironment. However, common challenges of PDX models are the significant time required for tumor expansion, reduced tumor take rates, and higher costs. Here, we describe a fast, simple, and cost-effective method of expanding PDX of pancreatic ductal adenocarcinoma (PDAC) in mice. METHODS: We used two established frozen PDAC PDX tissues (derived from two different patients) and implanted them subcutaneously into SCID mice. After tissues reached 10-20 mm in diameter, we performed survival surgery on each mouse to harvest 90-95% of subcutaneous PDX (incomplete resection), allowing the remaining 5-10% of PDX to continue growing in the same mouse. RESULTS: We expanded three consecutive passages (P1, P2, and P3) of PDX in the same mouse. Comparing the times required for in vivo expansion, P2 and P3 (expanded through incomplete resection) grew 26-60% faster than P1. Moreover, such expanded PDX tissues were successfully implanted orthotopically into mouse pancreases. Within 20 weeks using only 14 mice, we generated sufficient PDX tissue for future implantation of 200 mice. Our histology study confirmed that the morphologies of cancer cells and stromal structures were similar across all three passages of subcutaneous PDX and the orthotopic PDX and were reflective of the original patient tumors. CONCLUSIONS: Taking advantage of incomplete resection of tumors associated with high local recurrence, we established a fast method of PDAC PDX expansion in mice.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Análisis Costo-Beneficio , Xenoinjertos , Humanos , Ratones , Ratones SCID , Recurrencia Local de Neoplasia , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Gastroenterology ; 151(6): 1232-1244.e10, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27523981

RESUMEN

BACKGROUND & AIMS: Little is known about the origin of pancreatic intraductal papillary mucinous neoplasms (IPMN). Pancreatic duct glands (PDGs) are gland-like outpouches budding off the main pancreatic ducts that function as a progenitor niche for the ductal epithelium; they express gastric mucins and have characteristics of side-branch IPMNs. We investigated whether PDGs are a precursor compartment for IPMNs and the role of Trefoil factor family 2 (TFF2)-a protein expressed by PDGs and the gastric mucosa that are involved in epithelial repair and tumor suppression. METHODS: We obtained pancreatectomy specimens from 20 patients with chronic pancreatitis, 13 with low-grade side-branch IPMNs, and 15 patients with PDAC; histologically normal pancreata were used as controls (n = 18). Samples were analyzed by immunohistochemistry to detect TFF1 and TFF2 and cell proliferation. We performed mitochondrial DNA mutational mapping studies to determine the cell lineage and fate of PDG cells. Pdx1-Cre;LSL-KRASG12D (KC) mice were bred with TFF2-knockout mice to generate KC/Tff2-/- and KC/Tff2+/- mice. Pancreata were collected and histologically analyzed for formation of IPMN, pancreatic intraepithelial neoplasias, and PDAC, in addition to proliferation and protein expression. Human pancreatic ductal epithelial cells and PDAC cell lines were transfected with vectors to overexpress or knock down TFF2 or SMAD4. RESULTS: Histologic analysis of human samples revealed gastric-type IPMN to comprise 2 molecularly distinct layers: a basal crypt segment that expressed TFF2 and overlying papillary projections. Proliferation occurred predominantly in the PDG-containing basal segments. Mitochondrial mutation mapping revealed a 97% match between the profiles of proliferating PDG cells and their overlying nonproliferative IPMN cells. In contrast to KC mice, 2-month-old KC/Tff2+/- and KC/Tff2-/- mice developed prominent papillary structures in the duct epithelium with cystic metaplasia of the PDG, which resembled human IPMN; these expressed gastric mucins (MUC5AC and MUC6), but not the intestinal mucin MUC2. KC/TFF2-knockout mice developed a greater number and higher grade of pancreatic intraepithelial neoplasias than KC mice, and 1 mouse developed an invasive adenocarcinoma. Expression of TFF2 reduced proliferation of PDAC cells 3-fold; this effect required up-regulation and activation of SMAD4. We found expression of TFF2 to be down-regulated in human PDAC by hypermethylation of its promoter. CONCLUSIONS: In histologic analyses of human IPMNs, we found PDGs to form the basal segment and possibly serve as a progenitor compartment. TFF2 has tumor-suppressor activity in the mouse pancreas and prevents formation of mucinous neoplasms.


Asunto(s)
Epitelio/patología , Neoplasias Quísticas, Mucinosas y Serosas/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Factor Trefoil-2/genética , Factor Trefoil-2/metabolismo , Animales , Carcinoma Ductal Pancreático , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN , Análisis Mutacional de ADN , ADN Mitocondrial/análisis , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Antígeno Ki-67/análisis , Masculino , Metaplasia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucina 5AC/análisis , Mucina 6/análisis , Mutación , Neoplasias Quísticas, Mucinosas y Serosas/química , Neoplasias Quísticas, Mucinosas y Serosas/genética , Páncreas , Conductos Pancreáticos/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/genética , Pancreatitis Crónica , Regiones Promotoras Genéticas/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor Trefoil-1/análisis , Factor Trefoil-2/análisis
10.
Small ; 12(42): 5873-5881, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27594517

RESUMEN

Identifying and separating a subpopulation of cells from a heterogeneous mixture are essential elements of biological research. Current approaches require detailed knowledge of unique cell surface properties of the target cell population. A method is described that exploits size differences of cells to facilitate selective intracellular delivery using a high throughput microfluidic device. Cells traversing a constriction within this device undergo a transient disruption of the cell membrane that allows for cytoplasmic delivery of cargo. Unique constriction widths allow for optimization of delivery to cells of different sizes. For example, a 4 µm wide constriction is effective for delivery of cargo to primary human T-cells that have an average diameter of 6.7 µm. In contrast, a 6 or 7 µm wide constriction is best for large pancreatic cancer cell lines BxPc3 (10.8 µm) and PANC-1 (12.3 µm). These small differences in cell diameter are sufficient to allow for selective delivery of cargo to pancreatic cancer cells within a heterogeneous mixture containing T-cells. The application of this approach is demonstrated by selectively delivering dextran-conjugated fluorophores to circulating tumor cells in patient blood allowing for their subsequent isolation and genomic characterization.

11.
Tumour Biol ; 37(6): 7547-54, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26684803

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is most often diagnosed in a metastatic stage. Circulating tumor cells (CTC) in the blood are hypothesized as the means of systemic dissemination. We aimed to isolate and characterize CTC to evaluate their significance as prognostic markers in PDAC. Blood obtained from healthy donors and patients with PDAC before therapy was filtered with ScreenCell® filtration devices for size-based CTC isolation. Captured cells were analyzed by immunofluorescence for an epithelial to mesenchymal transition (EMT) marker (zinc finger E-box binding homebox 1 (ZEB1)) and an epithelial antigen (cytokeratin (CK)). Molecular analysis of parallel specimens evaluated the KRAS mutation status of the CTC. The survival of each patient after study was recorded. As demonstrated by either cytology or finding of a KRAS mutation, CTC were detected in 18 of 21 patients (86 %) with proven PDAC: 8 out of 10 patients (80 %) with early stage (UICC IIA/IIB) and 10 out of 11 (91 %) with late stage (UICC III/IV) disease. CTC were not found in any of the 10 control patients (p < 0.001). The presence of CTC did not adversely affect median survival: 16 months in CTC-positive (n = 18) vs. 10 months in CTC-negative (n = 3) patients. Neither ZEB1 nor cytological characteristics correlated with overall survival, although ZEB1 was found almost exclusively in CTC of patients with established metastases. Patients with a CTC KRAS mutation (CTC-KRAS (mut)) had a substantially better survival, 19.4 vs. 7.4 months than patients with wild type KRAS (p = 0.015). With ScreenCell filtration, CTC are commonly found in PDAC (86 %). Molecular and genetic characterization, including mutations such as KRAS, may prove useful for prognosis.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Mutación/genética , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Anciano , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Transición Epitelial-Mesenquimal , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Proyectos Piloto , Pronóstico , Tasa de Supervivencia
12.
J Clin Invest ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888968

RESUMEN

Tolerance of mouse kidney allografts arises in grafts that develop regulatory Tertiary Lymphoid Organs (rTLOs). scRNAseq data and adoptive transfer of alloreactive T cells post-transplant showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required since adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8 KO recipients resulted in acceptance and not rejection. Analysis of scRNAseq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call "defensive tolerance." This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.

13.
Cancer Res ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38759082

RESUMEN

Neoadjuvant therapy (NAT) is routinely used in pancreatic ductal adenocarcinoma (PDAC), but not all tumors respond to this treatment. Current clinical imaging techniques are not able to precisely evaluate and predict the response to neoadjuvant therapies over several weeks. A strong fibrotic reaction is a hallmark of a positive response, and during fibrogenesis allysine residues are formed on collagen proteins by the action of lysyl oxidases (LOX). Here we report the application of an allysine-targeted molecular magnetic resonance imaging (MRI) probe, MnL3, to provide an early, noninvasive assessment of treatment response in PDAC. Allysine increased 2- to 3-fold after one dose of NAT with FOLFIRINOX in sensitive human PDAC xenografts in mice. Molecular MRI with MnL3 could specifically detect and quantify fibrogenesis in PDAC xenografts. Comparing the MnL3 signal before and 3 days after one dose of FOLFIRINOX predicted subsequent treatment response. The MnL3 tumor signal increased by 70% from day 0 to day 3 in mice that responded to subsequent doses of FOLFIRINOX, while no signal increase was observed in FOLFIRINOX-resistant tumors. This study indicates the promise of allysine-targeted molecular MRI as a noninvasive tool to predict chemotherapy outcomes.

14.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393682

RESUMEN

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Asunto(s)
Complejo CD3 , Endopeptidasas , Proteínas Ligadas a GPI , Inmunoterapia Adoptiva , Mesotelina , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Adenocarcinoma/patología
15.
Proc Natl Acad Sci U S A ; 107(1): 75-80, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20018761

RESUMEN

The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing "pancreatospheres" in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas.


Asunto(s)
Páncreas/citología , Páncreas/fisiología , Células Madre , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Separación Celular/métodos , Células Epiteliales/citología , Células Epiteliales/patología , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Páncreas/enzimología , Retinal-Deshidrogenasa , Células Madre/citología , Células Madre/fisiología
16.
Sci Rep ; 13(1): 10969, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414831

RESUMEN

Increased use of cross-sectional imaging has resulted in frequent detection of incidental cystic pancreatic lesions. Serous cystadenomas (SCAs) are benign cysts that do not require surgical intervention unless symptomatic. Unfortunately, up to half of SCAs do not have typical imaging findings ("atypical SCAs"), overlap with potentially malignant precursor lesions, and thus pose a diagnostic challenge. We tested whether the analysis of circulating extracellular vesicle (EV) biomarkers using a digital EV screening technology (DEST) could enhance the discrimination of cystic pancreatic lesions and avoid unnecessary surgical intervention in these atypical SCAs. Analysis of 25 different protein biomarkers in plasma EV from 68 patients identified a putative biomarker signature of Das-1, Vimentin, Chromogranin A, and CAIX with high discriminatory power (AUC of 0.99). Analysis of plasma EV for multiplexed markers may thus be helpful in clinical decision-making.


Asunto(s)
Cistadenoma Seroso , Quiste Pancreático , Neoplasias Pancreáticas , Humanos , Cistadenoma Seroso/diagnóstico , Cistadenoma Seroso/patología , Cistadenoma Seroso/cirugía , Quiste Pancreático/diagnóstico , Diagnóstico Diferencial , Neoplasias Pancreáticas/patología , Biomarcadores
17.
J Mol Diagn ; 25(6): 367-377, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965665

RESUMEN

Digital PCR (dPCR) allows for highly sensitive quantification of low-frequency mutations and facilitates early detection of cancer. However, low-throughput targeting of single hotspots in dPCR hinders variant specification when multiple probes are used. We developed a dPCR method to simultaneously identify major variants related to pancreatic carcinogenesis. Using a two-dimensional plot of droplet fluorescence under the optimized concentration of two fluorescent probe pools, the absolute quantification of different KRAS and GNAS variants was determined. Successful detection of the multiple driver mutations was verified in 24 surgically resected tumor samples from 19 patients and 22 fine-needle aspiration samples from patients with pancreatic ductal adenocarcinoma. Precise quantification of the variant allele frequency was optimized by using template DNA at a concentration as low as 1 to 10 ng. Furthermore, amplicons targeting multiple hotspots were successfully enriched with fewer false-positive findings using high-fidelity polymerase, allowing for the detection of various KRAS and GNAS mutations with high probability in small amount of cell/tissue specimens. Using this target enrichment, mutations at a rate of 90% in small residual tissues, such as the fine-needle aspiration needle flush and microscopic lesions in resected specimens, were successfully identified. The proposed method allows for low-cost, accurate detection of driver mutations to diagnose cancers, even with minimal tissue collection.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Reacción en Cadena de la Polimerasa Multiplex , Carcinogénesis , Cromograninas/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética
18.
Gut ; 60(12): 1712-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21508421

RESUMEN

OBJECTIVE: Invasive cancers arising from intraductal papillary mucinous neoplasm (IPMN) are recognised as a morphologically and biologically heterogeneous group of neoplasms. Less is known about the epithelial subtypes of the precursor IPMN from which these lesions arise. The authors investigate the clinicopathological characteristics and the impact on survival of both the invasive component and its background IPMN. DESIGN AND PATIENTS: The study cohort comprised 61 patients with invasive IPMN (study group) and 570 patients with pancreatic ductal adenocarcinoma (PDAC, control group) resected at a single institution. Multivariate analyses were performed using a stage-matched Cox proportional hazard model. RESULTS: The histology of invasive components of the IPMN cohort was tubular in 38 (62%), colloid in 16 (26%), and oncocytic in seven (12%). Compared with PDAC, invasive IPMNs were associated with a lower incidence of adverse pathological features and improved mortality by multivariate analysis (HR 0.58; 95% CI 0.39 to 0.86). In subtype analysis, this favourable outcome remained only for colloid and oncocytic carcinomas, while tubular adenocarcinoma was associated with worse overall survival, not significantly different from that of PDAC (HR 0.85; 95% CI 0.53 to 1.36). Colloid and oncocytic carcinomas arose only from intestinal- and oncocytic-type IPMNs, respectively, and were mostly of the main-duct type, whereas tubular adenocarcinomas primarily originated in the gastric background, which was often associated with branch-duct IPMN. Overall survival of patients with invasive adenocarcinomas arising from gastric-type IPMN was significantly worse than that of patients with non-gastric-type IPMN (p=0.016). CONCLUSIONS: Tubular, colloid and oncocytic invasive IPMNs have varying prognosis, and arise from different epithelial subtypes. Colloid and oncocytic types have markedly improved biology, whereas the tubular type has a course that resembles PDAC. Analysis of these subtypes indicates that the background epithelium plays an equally, if not more, important role in defining the biology and prognosis of invasive IPMNs.


Asunto(s)
Adenocarcinoma Mucinoso/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Adenocarcinoma Mucinoso/patología , Anciano , Carcinoma Ductal Pancreático/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Invasividad Neoplásica/patología , Páncreas/patología , Neoplasias Pancreáticas/patología , Pronóstico , Modelos de Riesgos Proporcionales
19.
J Gastroenterol ; 57(11): 819-826, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36048239

RESUMEN

Pancreatic adenocarcinoma is a lethal cancer with poor response to chemotherapy and immune checkpoint inhibitors. Recent studies suggest that epigenetic alterations contribute to its aggressive biology and the tumor microenvironment which render it unresponsive to immune checkpoint blockade. Here, we review our current understandings of epigenetic dysregulation in pancreatic adenocarcinoma, its effect on the tumor immune microenvironment, and the potential for epigenetic therapy to be combined with immune checkpoint inhibitors.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Adenocarcinoma/terapia , Inhibidores de Puntos de Control Inmunológico , Epigénesis Genética , Inmunoterapia , Microambiente Tumoral/genética , Neoplasias Pancreáticas
20.
Sci Adv ; 8(16): eabm3453, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452280

RESUMEN

Tumor cell-derived extracellular vesicles (EVs) are being explored as circulating biomarkers, but it is unclear whether bulk measurements will allow early cancer detection. We hypothesized that a single-EV analysis (sEVA) technique could potentially improve diagnostic accuracy. Using pancreatic cancer (PDAC), we analyzed the composition of putative cancer markers in 11 model lines. In parental PDAC cells positive for KRASmut and/or P53mut proteins, only ~40% of EVs were also positive. In a blinded study involving 16 patients with surgically proven stage 1 PDAC, KRASmut and P53mut protein was detectable at much lower levels, generally in <0.1% of vesicles. These vesicles were detectable by the new sEVA approach in 15 of the 16 patients. Using a modeling approach, we estimate that the current PDAC detection limit is at ~0.1-cm3 tumor volume, below clinical imaging capabilities. These findings establish the potential for sEVA for early cancer detection.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA