Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 227(4)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38299309

RESUMEN

In nature, many organisms experience a daily range of body temperatures. Thermal performance at stable temperatures is often extrapolated to predict function in cyclical environments. However, temperature order and cyclicity may influence physiological processes. The current study compared energy intake, digestive passage time and energy budgets at a stable temperature (33°C) and two temperature cycles in lizards (Sceloporus consobrinus), to determine (1) whether stable treatments adequately project performance in a cycling environment and (2) whether temperature order influences performance. Cycles had a mean temperature of 33°C, and rotated through 30°C, 33°C and 36°C daily, with equal durations of time at each temperature but differing temperature order, with warm days and cool nights in cycle 1 and cool days and warm nights in cycle 2. For analyses, performance in the stable treatment was compared with that during cycles. If temperature is the primary factor regulating performance, then performance from the stable treatment and cycles should compare favorably. However, physiological performance varied based on temperature treatment. Energy intake and budgets were similar between the stable trial and cycle 1 but not cycle 2. However, passage time did not differ. Notably, the two cycling regimes consistently varied in performance, indicating that temperature order plays a primary role in regulating performance. Physiological data collection requires careful consideration of effects of cycling versus stable temperature treatments. Stable temperatures do not consistently represent performance in cycling regimes and consideration should be paid not only to which temperatures animals experience but also to how temperature is experienced in nature.


Asunto(s)
Lagartos , Animales , Temperatura , Lagartos/fisiología , Pradera , Temperatura Corporal , Frío
2.
J Therm Biol ; 120: 103808, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38387224

RESUMEN

Individual variation in energetics, environment, and genetics can influence population-level processes. However, it is often assumed that locally measured thermal and bioenergetic responses apply among broadly related species. Even closely related taxa may differ in the thermal sensitivity of performance, which in turn influences population persistence, population vital rates, and the ability to respond to environmental changes. The objectives of this project were to quantify the thermal sensitivity of digestive physiology in an Sceloporus lizards, to compare closely related, but geographically distinct, populations. Sceloporus lizards are a model organism, as they are known to exhibit thermally dependent physiologies and are geographically widespread. Digestive passage time, food consumption, fecal and urate production, metabolizable energy intake (MEI), and assimilated energy (AE) were compared for Sceloporus consobrinus in Arkansas and S. undulatus in South Carolina and New Jersey. Published data were acquired for NJ and SC lizards, while original data were collected for S. consobrinus. Comparisons of digestion among populations were made at 30 °C, 33 °C, or 36 °C. Results suggest that digestive physiology differs among populations, with S. consobrinus being more efficient at warmer temperatures. In contrast, NJ and SC lizards had quicker passage times and lower fecal and urate production at 30 °C in comparison to AR. The results of the current study exemplify how closely related organisms can differ in thermal sensitivity of performance. Such data are important for understanding how individual-level processes can vary in response to climate, with implications for understanding variation in physiological traits across the range of Sceloporus lizards.


Asunto(s)
Lagartos , Ácido Úrico , Animales , Temperatura , Clima , Lagartos/fisiología , Digestión
3.
J Therm Biol ; 86: 102432, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31789228

RESUMEN

Understanding the evolution of thermal tolerance in ectotherms is particularly important given the current period of rapid change in the environment and thermal climate. Specifically, introduced species have the potential to evolve different thermal tolerances than native populations due to rapid evolution and novel selection pressures. Our study examined critical thermal tolerance in two introduced lizard species, the European wall lizard (Podarcis muralis) in Ohio and Kentucky, and the Mediterranean gecko (Hemidactylus turcicus) from Texas through Alabama. We tested the hypotheses that critical thermal maximum, minimum, and breadth varies among introduced populations of P. muralis and H. turcicus, and that critical thermal tolerance broadens when moving away from the introduction site, because dispersal across novel environments may remove dispersers with narrow thermal tolerances. We found that among P. muralis populations, CTmin and thermal breadth were significantly different. Specifically, when moving away from the introduction site, lizards exhibited increased cold tolerance and broader thermal breadth. Variability in thermal parameters were also lowest at the site closest to the introduction point in P. muralis. In contrast, H. turcicus had no significant differences in critical thermal minimum, maximum, or breadth among sites, or with respect to distance from introduction point. However, we did find little variability in thermal maximum, compared to greater variability in overall tolerance and critical thermal minimums. Thus, this study shows that selection on thermal tolerance and dispersal characteristics occur in novel climatic environments. Understanding how thermal tolerance changes over time can aid in predicting establishment and movement of introduced species, with applications for native species during a time of global climatic change.


Asunto(s)
Especies Introducidas , Lagartos/fisiología , Termotolerancia , Animales , Ecosistema , Temperatura
4.
Integr Comp Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982258

RESUMEN

Trade-offs resulting from the high demand of offspring production are a central focus of many subdisciplines within the field of biology. Yet, despite the historical and current interest on this topic, large gaps in our understanding of whole-organism trade-offs that occur in reproducing individuals remain, particularly as it relates to the nuances associated with female reproduction. This volume of Integrative and Comparative Biology (ICB) contains a series of papers that focus on reviewing trade-offs from the female-centered perspective of biology (i.e., a perspective that places female reproductive biology at the center of the topic being investigated or discussed). These papers represent some of the work showcased during our symposium held at the 2024 meeting of the Society for Integrative and Comparative Biology (SICB) in Seattle, Washington. In this roundtable discussion, we use a question-and-answer format to capture the diverse perspectives and voices involved in our symposium. We hope that the dialogue featured in this discussion will be used to motivate researchers interested in understanding trade-offs in reproducing females and provide guidance on future research endeavors.

5.
Ecol Evol ; 11(23): 17519-17526, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938526

RESUMEN

Biological patterns across latitudinal gradients elucidate a number of striking natural clines from which numerous processes can be further explored. The trade-off between reproduction and somatic maintenance and growth represents a suite of life-history traits with variable energy allocation and potential latitudinal patterns. Specifically, male sexually dimorphic traits in female choice systems represent one such reproductive investment constrained by resource acquisition and subsequent allocation. Latitudinal variation in sexual dimorphism has been suggested although the relationship between dimorphic traits and latitude are conflicting. Here, we test alternative hypotheses regarding this pattern using two broadly distributed vertebrates exhibiting sexually dimorphic traits. We hypothesized that the exaggeration of dimorphic traits correlates with latitude, with males having exaggerated sexually dimorphic traits at either higher or lower latitudes. Results indicate that male sexually dimorphic traits are exaggerated at lower latitudes while relative gonopodium size in Poecilia latipinna was larger at higher latitudes. This pattern may be a result of lower latitude populations experiencing greater population densities and longer access to resources that could manifest in females more intensively selecting for higher quality males in lower latitudes. Experimental work should address this pattern and investigate mechanistic processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA