Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 299(6): 104735, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086789

RESUMEN

Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.


Asunto(s)
Proteínas Portadoras , Complejo Dinactina , Dineínas , Proteínas Asociadas a Microtúbulos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Citoesqueleto/metabolismo , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Humanos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
2.
J Biol Chem ; 296: 100044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33168632

RESUMEN

Biological liquid-liquid phase separation has gained considerable attention in recent years as a driving force for the assembly of subcellular compartments termed membraneless organelles. The field has made great strides in elucidating the molecular basis of biomolecular phase separation in various disease, stress response, and developmental contexts. Many important biological consequences of such "condensation" are now emerging from in vivo studies. Here we review recent work from our group and others showing that many proteins undergo rapid, reversible condensation in the cellular response to ubiquitous environmental fluctuations such as osmotic changes. We discuss molecular crowding as an important driver of condensation in these responses and suggest that a significant fraction of the proteome is poised to undergo phase separation under physiological conditions. In addition, we review methods currently emerging to visualize, quantify, and modulate the dynamics of intracellular condensates in live cells. Finally, we propose a metaphor for rapid phase separation based on cloud formation, reasoning that our familiar experiences with the readily reversible condensation of water droplets help understand the principle of phase separation. Overall, we provide an account of how biological phase separation supports the highly intertwined relationship between the composition and dynamic internal organization of cells, thus facilitating extremely rapid reorganization in response to internal and external fluctuations.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Cuerpos de Inclusión/metabolismo , Orgánulos/metabolismo , Ósmosis
3.
bioRxiv ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39416085

RESUMEN

Cytoplasmic dynein-1 (dynein), the primary retrograde motor in most eukaryotes, supports the movement of hundreds of distinct cargos, each with specific trafficking requirements. To achieve this functional diversity, dynein must bind to the multi-subunit complex dynactin and one of a family of cargo adaptors to be converted into an active, processive motor complex. Very little is known about the dynamic processes that promote the formation of this complex. To delineate the kinetic steps that lead to dynein activation, we developed a single-molecule fluorescence assay to visualize the real-time formation of dynein-dynactin-adaptor complexes in vitro. We found that dynactin and adaptors bind dynein independently rather than cooperatively. We also found that different dynein adaptors promote dynein-dynactin-adaptor assembly with dramatically different kinetics, which results in complex formation occurring via different assembly pathways. Despite differences in association rates or mechanism of assembly, all adaptors tested can generate a population of tripartite complexes that are very stable. Our work provides a model for how modulating the kinetics of dynein-dynactin-adaptor binding can be harnessed to promote differential dynein activation and reveals a new facet of the functional diversity of the dynein motor.

4.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747695

RESUMEN

Dynein is the primary minus-end-directed microtubule motor [1]. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex" [2, 3]. The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and adaptor [4, 5]. Ndel1 and its orthologue Nde1 are dynein and Lis1 binding proteins that help control where dynein localizes within the cell [6]. Cell-based assays suggest that Ndel1/Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear [6]. Using purified proteins and quantitative binding assays, we found that Ndel1's C-terminal region contributes to binding to dynein and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in Ndel1's C-terminal domain increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.

5.
Wiley Interdiscip Rev RNA ; 11(4): e1587, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31990126

RESUMEN

Messenger RNAs (mRNAs) convey genetic information from the DNA genome to proteins and thus lie at the heart of gene expression and regulation of all cellular activities. Live cell single molecule tracking tools enable the investigation of mRNA trafficking, translation and degradation within the complex environment of the cell and in real time. Over the last 5 years, nearly all tools within the mRNA tracking toolbox have been improved to achieve high-quality multi-color tracking in live cells. For example, the bacteriophage-derived MS2-MCP system has been improved to facilitate cloning and achieve better signal-to-noise ratio, while the newer PP7-PCP system now allows for orthogonal tracking of a second mRNA or mRNA region. The coming of age of epitope-tagging technologies, such as the SunTag, MoonTag and Frankenbody, enables monitoring the translation of single mRNA molecules. Furthermore, the portfolio of fluorogenic RNA aptamers has been expanded to improve cellular stability and achieve a higher fluorescence "turn-on" signal upon fluorogen binding. Finally, microinjection-based tools have been shown to be able to track multiple RNAs with only small fluorescent appendages and to track mRNAs together with their interacting partners. We systematically review and compare the advantages, disadvantages and demonstrated applications in discovering new RNA biology of this refined, expanding toolbox. Finally, we discuss developments expected in the near future based on the limitations of the current methods. This article is categorized under: RNA Export and Localization > RNA Localization RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Asunto(s)
Fluorescencia , Imagen Óptica , ARN Mensajero/metabolismo , Imagen Individual de Molécula , Animales , Aptámeros de Nucleótidos/metabolismo , Humanos , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA