Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(39): 26944-26956, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28956044

RESUMEN

High-affinity chelating tags for Gd(iii) and Mn(ii) ions that provide valuable high-resolution distance restraints for biomolecules were used as spin labels for double electron-electron resonance (DEER) measurements. The availability of a generic tag that can bind both metal ions and provide a narrow and predictable distance distribution for both ions is attractive owing to their different EPR-related characteristics. Herein we introduced two paramagnetic tags, 4PSPyMTA and 4PSPyNPDA, which are conjugated to cysteine residues through a stable thioether bond, forming a short and, depending on the metal ion coordination mode, a rigid tether with the protein. These tags exhibit high affinity for both Mn(ii) and Gd(iii) ions. The DEER performance of the 4PSPyMTA and 4PSPyNPDA tags, in complex with Gd(iii) or Mn(ii), was evaluated for three double cysteine mutants of ubiquitin, and the Gd(iii)-Gd(iii) and Mn(ii)-Mn(ii) distance distributions they generated were compared. All three Gd(iii) complexes of the ubiquitin-PyMTA and ubiquitin-PyNPDA conjugates produced similar and expected distance distributions. In contrast, significant variations in the maxima and widths of the distance distributions were observed for the Mn(ii) analogs. Furthermore, whereas PyNPDA-Gd(iii) and PyNPDA-Mn(ii) delivered similar distance distributions, appreciable differences were observed for two mutants with PyMTA, with the Mn(ii) analog exhibiting a broader distance distribution and shorter distances. ELDOR (electron-electron double resonance)-detected NMR measurements revealed some distribution in the Mn(ii) coordination environment for the protein conjugates of both tags but not for the free tags. The broader distance distributions generated by 4PSPyMTA-Mn(ii), as compared with Gd(iii), were attributed to the distributed location of the Mn(ii) ion within the PyMTA chelate owing to its smaller size and lower coordination number that leave the pyridine nitrogen uncoordinated. Accordingly, in terms of distance resolution, 4PSPyNPDA can serve as an effective generic tag for Gd(iii) and Mn(ii), whereas 4PSPyMTA is efficient for Gd(iii) only. This comparison between Gd(iii) and Mn(ii) suggests that PyMTA model compounds may not predict sufficiently well the performance of PyMTA-Mn(ii) as a tag for high-resolution distance measurements in proteins because the protein environment can influence its coordination mode.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Proteínas/química , Quelantes , Cisteína , Electrones , Gadolinio , Iones , Espectroscopía de Resonancia Magnética , Manganeso , Marcadores de Spin , Ubiquitina
2.
J Magn Reson ; 294: 143-152, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30053753

RESUMEN

Mn2+ often serves as a paramagnetic substitute to Mg2+, providing means for exploring the close environment of Mg2+ in many biological systems where it serves as an essential co-factor. This applies to proteins with ATPase activity, where the ATP hydrolysis requires the binding of Mg2+-ATP to the ATPase active site. In this context, it is important to distinguish between the Mn2+ coordination mode with free ATP in solution as compared to the protein bound case. In this work, we explore the Mn2+ complexes with ATP, the non-hydrolysable ATP analog, AMPPNP, and ADP free in solution. Using W-band 31P electron-nuclear double resonance (ENDOR) we obtained information about the coordination to the phosphates, whereas from electron-electron double resonance (ELDOR) - detected NMR (EDNMR) we determined the coordination to an adenosine nitrogen. The coordination to these ligands has been reported earlier, but whether the nitrogen and phosphate coordination is within the same nucleotide molecules or different ones is still under debate. By applying the correlation technique, THYCOS (triple hyperfine correlation spectroscopy), and measuring 15N-31P correlations we establish that in Mn-ATP in solution both phosphates and a nitrogen are coordinated to the Mn2+ ion. We also carried out DFT calculations to substantiate this finding. In addition, we expanded the understanding of the THYCOS experiment by comparing it to 2D-EDNMR for 55Mn-31P correlation experiments and through simulations of THYCOS and 2D-EDNMR spectra with 15N-31P correlations.


Asunto(s)
Adenosina Trifosfato/química , Manganeso/química , Adenosina/química , Sitios de Unión , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Nitrógeno/química , Fosfatos/química
3.
Structure ; 25(8): 1264-1274.e3, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28712805

RESUMEN

We have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn2+ co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn2+ to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD. In contrast, the coordination of Mn2+ at the two NBSs of MsbA is similar, which provides a mechanistic rationale for its higher rate constant of ATP hydrolysis relative to BmrCD. Direct detection of vanadate ion, trapped in a high-energy post-hydrolysis intermediate, further supports the notion of asymmetric hydrolysis by the two NBSs of BmrCD. The integrated spectroscopic approach presented here, which link energy input to conformational dynamics, can be applied to a variety of systems powered by ATP turnover.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA