Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 18(10): 1213-1222, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34594034

RESUMEN

Recent years have witnessed rapid progress in the field of epitranscriptomics. Functional interpretation of the epitranscriptome relies on sequencing technologies that determine the location and stoichiometry of various RNA modifications. However, contradictory results have been reported among studies, bringing the biological impacts of certain RNA modifications into doubt. Here, we develop a synthetic RNA library resembling the endogenous transcriptome but without any RNA modification. By incorporating this modification-free RNA library into established mapping techniques as a negative control, we reveal abundant false positives resulting from sequence bias or RNA structure. After calibration, precise and quantitative mapping expands the understanding of two representative modification types, N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We propose that this approach provides a systematic solution for the calibration of various RNA-modification mappings and holds great promise in epitranscriptomic studies.


Asunto(s)
Epigénesis Genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Transcriptoma , Calibración , Regulación de la Expresión Génica , Células HeLa , Humanos
2.
J Clin Invest ; 134(14)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-39007267

RESUMEN

Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.


Asunto(s)
Adenosina , Inflamación , Animales , Ratones , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Adenosina/metabolismo , Adenosina/análogos & derivados , Humanos , Lipopolisacáridos , Ratones Noqueados , Modelos Animales de Enfermedad , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Sepsis/metabolismo , Sepsis/genética , Sepsis/patología , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Proteínas de Ciclo Celular
3.
Adv Sci (Weinh) ; 11(28): e2307981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713722

RESUMEN

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.


Asunto(s)
Adenosina , Antibacterianos , Ácidos y Sales Biliares , Disbiosis , Microbioma Gastrointestinal , Transcriptoma , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/genética , Ratones , Transcriptoma/genética , Antibacterianos/farmacología , Adenosina/análogos & derivados , Adenosina/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino
4.
Metabolites ; 11(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066348

RESUMEN

The host microbiome plays an important role in regulating physiology through microbiota-derived metabolites during host-microbiome interactions. However, molecular mechanism underly host-microbiome interactions remains to be explored. In this study, we used Drosophila as the model to investigate the influence of microbiome and microbiota-derived metabolite sodium butyrate on host transcriptome and metabolome. We established both a sterile Drosophila model and a conventional Drosophila model to demonstrate the role of sodium butyrate. Using multi-omics analysis, we found that microbiome and sodium butyrate could impact host gene expression patterns in both the sterile Drosophila model and the conventional Drosophila model. The analysis of gut microbial using 16S rRNA sequencing showed sodium butyrate treatment also influenced Drosophila bacterial structures. In addition, Drosophila metabolites identified by ultra-high performance liquid chromatography-MS/MS were shown to be affected by sodium butyrate treatment with lipids as the dominant changed components. Our integrative analysis of the transcriptome, the microbiome, and the metabolome data identified candidate transcripts that are coregulated by sodium butyrate. Taken together, our results reveal the impact of the microbiome and microbiota-derived sodium butyrate on host transcriptome and metabolome, and our work provides a better understanding of host-microbiome interactions at the molecular level with multi-omics data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA