Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trop Med Infect Dis ; 9(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39195618

RESUMEN

Klebsiella variicola is an opportunistic pathogen often misidentified as Klebsiella pneumoniae, leading to misdiagnoses and inappropriate treatment in clinical settings. The genetic and molecular characteristics of clinically isolated K. variicola remain largely unexplored. We aim to fill this knowledge gap by examining the genomic properties of and evolutionary relationships between clinical isolates of K. variicola. The genomic data of 70 K. variicola strains were analyzed using whole-genome sequencing. A phylogenetic tree was generated based on the gene sequences from these K. variicola strains and public databases. Among the K. variicola strains, the drug resistance genes with the highest carrying rates were beta-lactamase and aminoglycoside. Locally isolated strains had a higher detection rate for virulence genes than those in public databases, with yersiniabactin genes being the most prevalent. The K locus types and MLST subtypes of the strains exhibited a dispersed distribution, with O3/O3a being the predominant subtype within the O category. In total, 28 isolates carried both IncFIB(K)_Kpn3 and IncFII_pKP91 replicons. This study underscores the importance of developing more effective diagnostic tools and therapeutic strategies for K. variicola infections. The continued surveillance and monitoring of K. variicola strains is essential for understanding the epidemiology of infections and informing public health strategies.

2.
Ann Transl Med ; 10(24): 1330, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36660691

RESUMEN

Background: Although metabolic abnormalities have been deemed one of the essential risk factors for growth and development, the relationship between metabolic abnormalities and microtia is still unclear. In this study, we aimed to establish a cell model of microtia and the changes of serum metabolites in patients with microtia. Methods: After constructing a cell model of microtia with low expression of BMP5, we performed integrative metabolomics analysis. For the altered metabolites, the content of glycerophosphocholine (PC), triacylglycerol (TG), and choline in the serum of 28 patients (15 patients with microtia and 13 controls) with microtia was verified by enzyme-linked immunosorbent assay (ELISA). Results: Detailed metabolomic evaluation showed distinct clusters of metabolites between BMP5-low expressing cells and normal control (NC) cells. The cell model of microtia had significantly higher levels of TG, PC, glycerophosphoethanolamine (PE), sphingomyelin, sulfatide, glycerophosphoglycerol, diacylglycerol, and glycosphingolipid. The main abnormal metabolites were mainly concentrated in the glycerophospholipid metabolism pathway, and PC and choline were closely related. In the serum of patients with microtia, the contents of PC, TG, and choline were significantly increased. Conclusions: The individual serum samples confirmed the different metabolites between patients with microtia and controls. In particular, we showed that a newly developed metabolic biomarker panel has a high sensitivity and specificity for separating patients with microtia from controls.

3.
Ann Transl Med ; 9(5): 418, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33842639

RESUMEN

BACKGROUND: Bone morphogenetic protein 5 (BMP5) has been identified as one of the important risk factors for microtia; however, the link between them has yet to be clarified. In this study, we aimed to demonstrate the relationship of BMP5 with mitochondrial function and investigate the specific role of mitochondria in regulating microtia development. METHODS: BMP5 expression was measured in auricular cartilage tissues from patients with and without microtia. The effects of BMP5 knockdown on cellular function and mitochondrial function were also analyzed in vitro. Changes in genome-wide expression profiles were measured in BMP5-knockdown cells. Finally, the specific impact of BMP5 down-regulation on mitochondrial fat oxidation was analyzed in vitro. RESULTS: BMP5 expression was down-regulated in the auricular cartilage tissues of microtia patients. BMP5 down-regulation inhibited various cellular functions in vitro, including cell proliferation, mobility, and cytoactivity. The functional integrity of mitochondria was also damaged, accompanied by a decrease in mitochondrial membrane potential, reactive oxygen species (ROS) neutralization, and reduced adenosine triphosphate (ATP) production. Carnitine O-palmitoyltransferase 2 and diacylglycerol acyltransferase 2, two of the key regulators of mitochondrial lipid oxidation, were also found to be decreased by BMP5 down-regulation. CONCLUSIONS: Down-regulation of BMP5 affects glycerolipid metabolism and fatty acid degradation, leading to mitochondrial dysfunction, reduced ATP production, and changes in cell function, and ultimately resulting in microtia. This research provides supporting evidence for an important role of BMP5 down-regulation in affecting mitochondrial metabolism in cells, and sheds new light on the mechanisms underlying the pathogenesis of microtia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA