Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2403726121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805293

RESUMEN

The key of heterostructure is the combinations created by stacking various vdW materials, which can modify interlayer coupling and electronic properties, providing exciting opportunities for designer devices. However, this simple stacking does not create chemical bonds, making it difficult to fundamentally alter the electronic structure. Here, we demonstrate that interlayer interactions in heterostructures can be fundamentally controlled using hydrostatic pressure, providing a bonding method to modify electronic structures. By covering graphene with boron nitride and inducing an irreversible phase transition, the conditions for graphene lattice-matching bonding (IMB) were created. We demonstrate that the increased bandgap of graphene under pressure is well maintained in ambient due to the IMB in the interface. Comparison to theoretical modeling emphasizes the process of pressure-induced interfacial bonding, systematically generalizes, and predicts this model. Our results demonstrate that pressure can irreversibly control interlayer bonding, providing opportunities for high-pressure technology in ambient applications and IMB engineering in heterostructures.

2.
J Exp Bot ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497908

RESUMEN

In plants, the glutamine synthetase - glutamic acid synthetase (GS/GOGAT) cycle plays important roles in nitrogen metabolism, growth, development, and stress resistance. Excess ammonium (NH4+) restricts plant growth, but GS can help to alleviate NH4+ toxicity. In this study, 84K poplar (Populus alba × P. glandulosa) showed reduced biomass accumulation and leaf chlorosis under high-NH4+ stress. These symptoms were less severe in lines overexpressing the gene encoding glutamine synthetase (PagGS1;2-OE), and more severe in lines with inhibition of PagGS1;2 expression (PagGS1;2-RNAi). Compared with the wild type(WT), the PagGS1;2-OE lines showed significantly increased GS and GOGAT activities and higher contents of free amino acids, soluble protein, total nitrogen, and chlorophyll under high-NH4+ stress. In contrast, the antioxidant capacity and NH4+ assimilation capacity of PagGS1;2-RNAi lines were decreased under high-NH4+ stress. The total carbon (C) content and C/N ratio (C/N) of roots and leaves of PagGS1;2-OE lines were significantly higher than those of WT under high-NH4+ stress. Overexpression of PagGS1;2 led to increased accumulation of various amino acids (3-methylaspartic acid, glutamic acid, proline, serine, and histidine); reduced contents of carbohydrates (fructose, starch, galactose, glucose 1-phosphate, fructose 6-phosphate); and increased contents of sugar alcohols (sedum heptanose, maltose, mannitol, galactose, sorbitol) in the roots under high-NH4+ stress. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of PagGS1;2-OE lines, compared with those of wild type. Thus, PagGS1;2 overexpression affected C metabolism and amino acid metabolism pathways under high-NH4+ stress, which helped to maintain the balance of C and N metabolism and alleviate the symptoms of NH4+ toxicity. Modification of the GS/GOGAT cycle by genetic engineering is a promising strategy to improve NH4+ tolerance of forest trees.

3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256092

RESUMEN

Secondary development is a key biological characteristic of woody plants and the basis of wood formation. Exogenous nitrogen can affect the secondary growth of poplar, and some regulatory mechanisms have been found in the secondary xylem. However, the effect of nitrogen on cambium has not been reported. Herein, we investigated the effects of different nitrogen concentrations on cambium development using combined transcriptome and metabolome analysis. The results show that, compared with 1 mM NH4NO3 (M), the layers of hybrid poplar cambium cells decreased under the 0.15 mM NH4NO3 (L) and 0.3 mM NH4NO3 (LM) treatments. However, there was no difference in the layers of hybrid poplar cambium cells under the 3 mM NH4NO3 (HM) and 5 mM NH4NO3 (H) treatments. Totals of 2365, 824, 649 and 398 DEGs were identified in the M versus (vs.) L, M vs. LM, M vs. HM and M vs. H groups, respectively. Expression profile analysis of the DEGs showed that exogenous nitrogen affected the gene expression involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the starch and sucrose metabolism pathway and the ubiquitin-mediated proteolysis pathway. In M vs. L, M vs. LM, M vs. HM and M vs. H, differential metabolites were enriched in flavonoids, lignans, coumarins and saccharides. The combined analysis of the transcriptome and metabolome showed that some genes and metabolites in plant hormone signal transduction, phenylpropanoid biosynthesis and starch and sucrose metabolism pathways may be involved in nitrogen regulation in cambium development, whose functions need to be verified. In this study, from the point of view that nitrogen influences cambium development to regulate wood formation, the network analysis of the transcriptome and metabolomics of cambium under different nitrogen supply levels was studied for the first time, revealing the potential regulatory and metabolic mechanisms involved in this process and providing new insights into the effects of nitrogen on wood development.


Asunto(s)
Cámbium , Populus , Cámbium/genética , Reguladores del Crecimiento de las Plantas , Transcriptoma , Metaboloma , Nitrógeno , Populus/genética , Almidón , Sacarosa
4.
Nanotechnology ; 35(3)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37669636

RESUMEN

The band gap and mechanical control ability of two-dimensional materials largely determine the application value of two-dimensional devices in optical and electronic properties, so the bandgap controllability of two-dimensional materials broadens the application range of multi-functional devices. In the layered van der Waals (vdW) material AgInP2S6, the band gap can be adjusted by the number of layers and flexible strain, and the few layers AgInP2S6have discrete band gap values, which are also relevant for optoelectronic applications. In the strain range of up to 2.7% applied, the band gap can be adjusted, and the film is relatively stable under strain. We further analyzed the physical mechanism of flexible strain band gap regulation and found that strain-regulation reduced the band gap and increased the chemical bond length. These studies open up new opportunities for the future development of vdW material photoelectric resonators represented by AgInP2S6, and have important reference value.

5.
Nanotechnology ; 35(5)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871598

RESUMEN

The generation of disorder often gives rise to profound and irreversible physical phenomena. Here, we explore the influence of disorder on the superconducting properties of In2Te3through comprehensive high-pressure investigations. Building upon previous findings, we investigated the progressive suppression of superconductivity in In2Te3during the depressurization process: the increased disorder that ultimately leads to the complete disappearance of the superconducting state. Simultaneously, our high-pressure x-ray diffraction analysis reveals an irreversible structural phase transition. Furthermore, microstructure analysis using transmission electron microscopy clearly demonstrates both grain refinement and a substantial enhancement of disorder. These findings not only provide valuable insights into the mechanism by which disorder suppresses superconductivity, but also offer guidance for future advancements in the fabrication of atmospheric-pressure superconductors.

6.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37837153

RESUMEN

An accurate and reliable estimation of photovoltaic models holds immense significance within the realm of energy systems. In pursuit of this objective, a Boosting Flower Pollination Algorithm (BFPA) was introduced to facilitate the robust identification of photovoltaic model parameters and enhance the conversion efficiency of solar energy into electrical energy. The incorporation of a Gaussian distribution within the BFPA serves the dual purpose of conserving computational resources and ensuring solution stability. A population clustering strategy is implemented to steer individuals in the direction of favorable population evolution. Moreover, adaptive boundary handling strategies are deployed to mitigate the adverse effects of multiple individuals clustering near problem boundaries. To demonstrate the reliability and effectiveness of the BFPA, it is initially employed to extract unknown parameters from well-established single-diode, double-diode, and photovoltaic module models. In rigorous benchmarking against eight control methods, statistical tests affirm the substantial superiority of the BFPA over these controls. Furthermore, the BFPA successfully extracts model parameters from three distinct commercial photovoltaic cells operating under varying temperatures and light irradiances. A meticulous statistical analysis of the data underscores a high degree of consistency between simulated data generated by the BFPA and observed data. These successful outcomes underscore the potential of the BFPA as a promising approach in the field of photovoltaic modeling, offering substantial enhancements in both accuracy and reliability.

7.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239858

RESUMEN

The ammonium transporter (AMT) family gene is an important transporter involved in ammonium uptake and transfer in plants and is mainly engaged in the uptake and transport of ammonium from the environment by roots and the reabsorption of ammonium in the aboveground parts. In this study, the expression pattern, functional identification, and genetic transformation of the PtrAMT1;6 gene, a member of the ammonium transporter protein family in P. trichocarpa, were investigated as follows: (1) Fluorescence quantitative PCR demonstrated that the PtrAMT1;6 gene was preferentially expressed in the leaves, with both dark-induced and light-inhibited expression patterns. (2) A functional restoration assay using the yeast ammonium transporter protein mutant strain indicated that the PtrAMT1;6 gene restored the ability of the mutant to transport ammonium with high affinity. (3) Arabidopsis was transformed with pCAMBIA-PtrAMT1;6P, and the transformed lines were stained with GUS, which showed that the rootstock junction, cotyledon petioles, and the leaf veins and pulp near the petioles of the transformed plants could be stained blue, indicating that the promoter of the PtrAMT1;6 gene had promoter activity. (4) The overexpression of the PtrAMT1;6 gene caused an imbalance in carbon and nitrogen metabolism and reduced nitrogen assimilation ability in '84K' poplar and ultimately reduced biomass. The above results suggest that PtrAMT1;6 may be involved in ammonia recycling during nitrogen metabolism in aboveground parts, and overexpression of PtrAMT1;6 may affect the process of carbon and nitrogen metabolism, as well as nitrogen assimilation in plants, resulting in stunted growth of overexpression plants.


Asunto(s)
Compuestos de Amonio , Arabidopsis , Populus , Compuestos de Amonio/metabolismo , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitrógeno/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Transformación Genética , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37834448

RESUMEN

The WRKY transcription factor (TF) family is one the largest plant-specific transcription factor families. It has been proven to play significant roles in multiple plant biological processes, especially stress response. Although many WRKY TFs have been identified in various plant species, WRKYs in white birch (Betula platyphylla Suk.) remain to be studied. Here, we identified a total of 68 BpWRKYs, which could be classified into four main groups. The basic physiochemical properties of these TFs were analyzed using bioinformatics tools, including molecular weight, isoelectric point, chromosome location, and predicted subcellular localization. Most BpWRKYs were predicted to be located in the nucleus. Synteny analysis found 17 syntenic gene pairs among BpWRKYs and 52 syntenic gene pairs between BpWRKYs and AtWRKYs. The cis-acting elements in the promoters of BpWRKYs could be enriched in multiple plant biological processes, including stress response, hormone response, growth and development, and binding sites. Tissue-specific expression analysis using qRT-PCR showed that most BpWRKYs exhibited highest expression levels in the root. After ABA, salt (NaCl), or cold treatment, different BpWRKYs showed different expression patterns at different treatment times. Furthermore, the results of the Y2H assay proved the interaction between BpWRKY17 and a cold-responsive TF, BpCBF7. By transient expression assay, BpWRKY17 and BpWRKY67 were localized in the nucleus, consistent with the previous prediction. Our study hopes to shed light for research on WRKY TFs and plant stress response.


Asunto(s)
Proteínas de Plantas , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Betula/genética , Betula/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
9.
J Exp Bot ; 73(19): 6876-6890, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36040843

RESUMEN

Programmed cell death (PCD) is essential for wood development in trees. However, the determination of crucial factors involved in xylem PCD of wood development is still lacking. Here, two Populus trichocarpa typical aspartic protease (AP) genes, AP17 and AP45, modulate xylem maturation, especially fibre PCD, during wood formation. AP17 and AP45 were dominantly expressed in the fibres of secondary xylem, as suggested by GUS expression in APpro::GUS transgenic plants. Cas9/gRNA-induced AP17 or AP45 mutants delayed secondary xylem fibre PCD, and ap17ap45 double mutants showed more serious defects. Conversely, AP17 overexpression caused premature PCD in secondary xylem fibres, indicating a positive modulation in wood fibre PCD. Loss of AP17 and AP45 did not alter wood fibre wall thickness, whereas the ap17ap45 mutants showed a low lignin content in wood. However, AP17 overexpression led to a significant decrease in wood fibre wall thickness and lignin content, revealing the involvement in secondary cell wall synthesis during wood formation. In addition, the ap17ap45 mutant and AP17 overexpression plants resulted in a significant increase in saccharification yield in wood. Overall, AP17 and AP45 are crucial modulators in xylem maturation during wood development, providing potential candidate genes for engineering lignocellulosic wood for biofuel utilization.


Asunto(s)
Proteasas de Ácido Aspártico , Populus , Populus/metabolismo , Madera , Lignina/metabolismo , Regulación de la Expresión Génica de las Plantas , Xilema , Plantas Modificadas Genéticamente/metabolismo , Proteasas de Ácido Aspártico/genética , Apoptosis , Pared Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Biochem Genet ; 60(2): 656-675, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34410559

RESUMEN

Lignin is essential for the characteristics and quality of timber. Nitrogen has significant effects on lignin contents in plants. Nitrogen has been found to affect wood quality in plantations and lignin content in plants. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is an important methyltransferase in lignin biosynthesis. However, the classification of woody plant CCoAOMT gene family members and the regulation mechanism of nitrogen are not clear. Bioinformatics methods were used to predict the members, classification, and transcriptional distribution of the CCoAOMT gene family in Populus trichocarpa. The results showed that there were five PtCCoAOMTs identified, and they could be divided into three sub-groups according to their structural and phylogenetic features. The results of tissue expression specificity analysis showed that: PtCCoAOMT1 was highly expressed in roots and internodes; PtCCoAOMT2 was highly expressed in roots, nodes, and internodes, PtCCoAOMT3 was highly expressed in stems; PtCCoAOMT4 was highly expressed in young leaves, and, PtCCoAOMT5 was highly expressed in roots. Different forms and concentrations of nitrogen had varying effects on the expression patterns of genes in different plant tissue types. The results of real-time PCR showed that the expression levels of PtCCoAOMT1 and PtCCoAOMT2 in stems increased significantly under different forms of nitrogen. PtCCoAOMT3 and PtCCoAOMT4 were induced by nitrate nitrogen in upper stems and lower leaves, respectively. PtCCoAOMT4 and PtCCoAOMT5 were induced by different concentrations of nitrate nitrogen in lower stems and roots, respectively. These results could provide valuable information for revealing the differences between functions and expression patterns of the various CCoAOMT gene family members under different forms and concentrations of exogenous nitrogen in poplar.


Asunto(s)
Populus , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/genética , Nitrógeno/metabolismo , Filogenia , Populus/genética , Populus/metabolismo
11.
Physiol Mol Biol Plants ; 27(9): 1919-1931, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34616114

RESUMEN

Fructokinase (FRK) is the main fructose phosphorylase and plays an important role in catalyzing the irreversible reaction of free fructose phosphorylation. In order to study the regulatory effect of different forms and concentrations of nitrogen on PtFRK genes in Populus trichocarpa, seven genes encoding the hypothetical FRK proteins were identified in Populus trichocarpa genome by bioinformatics method. Phylogenetic analysis revealed that PtFRK family genes can be divided into two subgroups: SI (PtFRK 1, 3, 4, 6) and SII (PtFRK 2, 5, 7). The tissue-specific expression data obtained from PopGenIE indicate that PtFRK2, 3, 4 and 5 are expressed highly in the stem. Quantitative real-time RT-PCR illustrate that PtFRK1-7 showed different expression patterns in different tissues under different concentrations and morphological nitrogen application. Under high nitrate treatment, the expression levels of PtFRK1, 2, 3 and 6 in stem increased significantly, while under low nitrate treatment, only the expression of PtFRK1, 4 in the upper stem and the expression of PtFRK3, 5 in the lower stem increased significantly. In contrast, ammonium tends to inhibit the expression of PtFRKs in lower stems, the expression levels of PtFRK2, 3, 4 and 5 are significantly reduced under ammonium treatment. However, high ammonium had significant effects on PtFRK6 in the apical bud and upper leaves, which were 6 and 8 times of the control, respectively. These results laid the foundation for the study of the PtFRK gene family of poplar and provided a theoretical basis for the molecular mechanism of nitrogen regulating cell wall development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01055-6.

12.
Nanotechnology ; 31(13): 135501, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31791018

RESUMEN

A great deal of engineering effort is focused on developing stretchable strain sensors for human motion monitoring and wearable devices. The ultrasensitivity and fast response under tiny strain (1%) while maintaining the working range remain the grand challenge. In this work, we propose an entirely stretchable strain sensor based on the sandwich sensing film, which is fabricated by vacuum filtration of silver nanowires (AgNWs)/ graphene/ AgNWs in sequence and the injection of liquid metal as electrodes. The novel sandwich sensing film endows the stretchable strain sensor high sensitivity under tiny strain (Gauge factor = 111.5 at 1%), fast response (<10 ms), relative large working range (0%-35%) with a maximum gauge factor of 1403.7, followed by good linearity, long-term durability, and the recovery property from being overstretched (>100%). The excellent performance is due to the slippage of the inner graphene under tiny strain, whereas the 'sewing' phenomenon of the outer AgNWs under larger strain. The sandwich structure illustrates a better combination of graphene and AgNWs than other hybrid methods, showing great potential in wearable devices and soft robotics.

13.
BMC Genomics ; 20(1): 801, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684868

RESUMEN

BACKGROUND: Seed germination, the foundation of plant propagation, involves a series of changes at the molecular level. Poplar is a model woody plant, but the molecular events occurring during seed germination in this species are unclear. RESULTS: In this study, we investigated changes in gene transcriptional levels during different germination periods in poplar by high-throughput sequencing technology. Analysis of genes expressed at specific germination stages indicated that these genes are distributed in many metabolic pathways. Enrichment analysis of significantly differentially expressed genes based on hypergeometric testing revealed that multiple pathways, such as pathways related to glycolysis, lipid, amino acid, protein and ATP synthesis metabolism, changed significantly at the transcriptional level during seed germination. A comparison of ΣZ values uncovered a series of transcriptional changes in biological processes related to primary metabolism during poplar seed germination. Among these changes, genes related to CHO metabolism were the first to be activated, with subsequent expression of genes involved in lipid metabolism and then those associated with protein metabolism. The pattern of metabolomic and physiological index changes further verified the sequence of some biological events. CONCLUSIONS: Our study revealed molecular events occurring at the transcriptional level during seed germination and determined their order. These events were further verified by patterns of changes of metabolites and physiological indexes. Our findings lay a foundation for the elucidation of the molecular mechanisms responsible for poplar seed germination.


Asunto(s)
Germinación/genética , Populus/crecimiento & desarrollo , Populus/genética , Semillas/crecimiento & desarrollo , Transcripción Genética , Regulación de la Expresión Génica de las Plantas , Populus/metabolismo , Populus/fisiología
14.
BMC Plant Biol ; 19(1): 279, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31242858

RESUMEN

BACKGROUND: Seed germination, a complex, physiological-morphogenetic process, is a critical stage in the life cycle of plants. Biological changes in germinating seeds have not been investigated in poplar, a model woody plant. RESULTS: In this study, we exploited next-generation sequencing and metabolomics analysis and uncovered a series of significantly different genes and metabolites at various stages of seed germination and post germination. The K-means method was used to identify multiple transcription factors, including AP2/EREBP, DOF, and YABBY, involved in specific seed germination and post-germination stages. A weighted gene coexpression network analysis revealed that cell wall, amino acid metabolism, and transport-related pathways were significantly enriched during stages 3 and 5, with no significant enrichment observed in primary metabolic processes such as glycolysis and the tricarboxylic acid cycle. A metabolomics analysis detected significant changes in intermediate metabolites in these primary metabolic processes, while a targeted correlation network analysis identified the gene family members most relevant to these changing metabolites. CONCLUSIONS: Taken together, our results provide important insights into the molecular networks underlying poplar seed germination and post-germination processes. The targeted correlation network analysis approach developed in this study can be applied to search for key candidate genes in specific biochemical reactions and represents a new strategy for joint multiomics analyses.


Asunto(s)
Germinación , Proteínas de Plantas/genética , Populus/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Proteínas de Plantas/metabolismo , Populus/crecimiento & desarrollo , Semillas/genética , Factores de Transcripción/metabolismo
15.
Nanotechnology ; 30(25): 25LT01, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30840930

RESUMEN

We demonstrate a fabrication scheme for clean suspended structures using chemical-vapor-deposition-grown graphene and a dry transfer method on lift-off-resist-coated substrates to facilitate suspended graphene nanoelectronic devices for technological applications. It encompasses the demands for scalable fabrication as well as for ultra-fast response due to weak coupling to environment. The fabricated devices exhibited initially a weak field-effect response with substantial positive (p) doping which transformed into weak negative (n) doping upon current annealing at the temperature of 4 K. With increased annealing current, n-doping gradually decreased while the Dirac peak position approached zero in gate voltage. An ultra-low residual charge density of 9 × 108 cm-2 and a mobility of 1.9 × 105 cm2 V-1 s-1 were observed. Our samples display clear Fabry-Pérot (FP) conductance oscillation which indicates ballistic electron transport. The spacings of the FP oscillations are found to depend on the charge density in a manner that agrees with theoretical modeling based on Klein tunneling of Dirac particles. The ultra-low residual charge, the FP oscillations with density dependent period, and the high mobility prove the excellent quality of our suspended graphene devices. Owing to its simplicity, scalability and robustness, this fabrication scheme enhances possibilities for production of suspended, high-quality, two-dimensional-material structures for novel electronic applications.

16.
Mol Cell Proteomics ; 14(9): 2510-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26091698

RESUMEN

Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination.


Asunto(s)
Germinación , Proteínas de Plantas/metabolismo , Polypodiaceae/crecimiento & desarrollo , Polypodiaceae/ultraestructura , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Polypodiaceae/fisiología , Proteómica/métodos , Análisis de la Célula Individual , Esporas/crecimiento & desarrollo , Esporas/ultraestructura
17.
Accid Anal Prev ; 195: 107395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086103

RESUMEN

Chain conflicts would cause chain-reaction crashes, which might result in elevated fatality rates. Chain conflicts describe a phenomenon wherein evasive actions taken by a following vehicle's driver after a conflict impact nearby vehicles, which occur frequently but are reported less often. To effectively reduce conflict risk, comprehending the evolution patterns of chain conflicts under varied traffic conditions and road segments is crucial, in order to make chain conflicts management strategies. Initially, rear-end or sideswipe conflicts between two vehicles are identified based on vehicle trajectory data captured by an unmanned aerial vehicle group. Subsequently, a chain conflict identification algorithm is proposed, considering the randomness of occurrence time and fluctuation of impact duration, to link individual conflicts. Chain conflict rates exhibit significant variations across different road segments under diverse traffic conditions. Multiple risk and propagation indicators are extracted to unveil latent characteristics of chain conflicts from a high-level perspective. Based on prominent characteristic disparities, three evolution patterns are identified, i.e., Longitudinal Risk Decrease Pattern, Longitudinal Risk Increase Pattern, and Comprehensive High-risk Persistent Pattern. Spatial-temporal high-risk areas associated with each pattern are determined, and transition probabilities between patterns are calculated. The results indicate that these patterns tend to remain stable, with transitions mainly occurring from low-risk to high-risk patterns. Moreover, strategies to reduce conflict risk are proposed based on the characteristics of different patterns. This study holds great significance in understanding chain conflict evolution patterns and preventing chain-reaction crashes.


Asunto(s)
Accidentes de Tránsito , Planificación Ambiental , Humanos , Accidentes de Tránsito/prevención & control , Conducta de Reducción del Riesgo , Algoritmos
18.
Nanomaterials (Basel) ; 14(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251095

RESUMEN

In aviation, aerospace, and other fields, nanomechanical resonators could offer excellent sensing performance. Among these, graphene resonators, as a new sensitive unit, are expected to offer very high mass and force sensitivity due to their extremely thin thickness. However, at present, the quality factor of graphene resonators at room temperature is generally low, which limits the performance improvement and further application of graphene resonators. Enhancing the quality factor of graphene resonators has emerged as a pressing research concern. In a previous study, we have proposed a new mechanism to reduce the energy dissipation of graphene resonators by utilizing phononic crystal soft-supported structures. We verified its feasibility through theoretical analysis and simulations. This article focuses on the fabrication of a phononic crystal soft-supported graphene resonator. In order to address the issues of easy fracture, deformation, and low success rate in the fabrication of phononic crystal soft-supported graphene resonators, we have studied key processes for graphene suspension release and focused ion beam etching. Through parameter optimization, finally, we have obtained phononic crystal soft-supported graphene resonators with varying cycles and pore sizes. Finally, we designed an optical excitation and detection platform based on Fabry-Pérot interference principle and explored the impact of laser power and spot size on phononic crystal soft-supported graphene resonators.

19.
Med Biol Eng Comput ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861056

RESUMEN

The use of invasive mechanical ventilation (IMV) is crucial in rescuing patients with respiratory dysfunction. Accurately predicting the demand for IMV is vital for clinical decision-making. However, current techniques are invasive and challenging to implement in pre-hospital and emergency rescue settings. To address this issue, a real-time prediction method utilizing only non-invasive parameters was developed to forecast IMV demand in this study. The model introduced the concept of real-time warning and leveraged the advantages of machine learning and integrated methods, achieving an AUC value of 0.935 (95% CI 0.933-0.937). The AUC value for the multi-center validation using the AmsterdamUMCdb database was 0.727, surpassing the performance of traditional risk adjustment algorithms (OSI(oxygenation saturation index): 0.608, P/F(oxygenation index): 0.558). Feature weight analysis demonstrated that BMI, Gcsverbal, and age significantly contributed to the model's decision-making. These findings highlight the substantial potential of a machine learning real-time dynamic warning model that solely relies on non-invasive parameters to predict IMV demand. Such a model can provide technical support for predicting the need for IMV in pre-hospital and disaster scenarios.

20.
GM Crops Food ; 15(1): 1-15, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38625676

RESUMEN

Poplar stands as one of the primary afforestation trees globally. We successfully generated transgenic poplar trees characterized by enhanced biomass under identical nutrient conditions, through the overexpression of the pivotal nitrogen assimilation gene, pxAlaAT3. An environmental risk assessment was conducted for investigate the potential changes in rhizosphere soil associated with these overexpressing lines (OL). The results show that acid phosphatase activity was significantly altered under ammonium in OL compared to the wild-type control (WT), and a similar difference was observed for protease under nitrate. 16SrDNA sequencing indicated no significant divergence in rhizosphere soil microbial community diversity between WT and OL. Metabolomics analysis revealed that the OL caused minimal alterations in the metabolites of the rhizosphere soil, posing no potential harm to the environment. With these findings in mind, we anticipate that overexpressed plants will not adversely impact the surrounding soil environment.


Asunto(s)
Populus , Rizosfera , Biomasa , Endopeptidasas , Nitrógeno , Populus/genética , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA