Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Breast Cancer Res ; 18(1): 9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26781438

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC), an aggressive disease comprising several subtypes including basal-like and claudin-low, involves frequent deletions or point mutations in TP53, as well as loss of PTEN. We previously showed that combined deletion of both tumor suppressors in the mouse mammary epithelium invariably induced claudin-low-like TNBC. The effect of p53 mutation plus Pten deletion on mammary tumorigenesis and whether this combination can induce basal-like TNBC in the mouse are unknown. METHODS: WAP-Cre:Pten(f/f):p53(lox.stop.lox_R270H) composite mice were generated in which Pten is deleted and a p53-R270H mutation in the DNA-binding domain is induced upon expression of Cre-recombinase in pregnancy-identified alveolar progenitors. Tumors were characterized by histology, marker analysis, transcriptional profiling [GEO-GSE75989], bioinformatics, high-throughput (HTP) FDA drug screen as well as orthotopic injection to quantify tumor-initiating cells (TICs) and tail vein injection to identify lung metastasis. RESULTS: Combined Pten deletion plus induction of p53-R270H mutation accelerated formation of four distinct mammary tumors including poorly differentiated adenocarcinoma (PDA) and spindle/mesenchymal-like lesions. Transplantation assays revealed highest frequency of TICs in PDA and spindle tumors compared with other subtypes. Hierarchical clustering demonstrated that the PDA and spindle tumors grouped closely with human as well as mouse models of basal and claudin-low subtypes, respectively. HTP screens of primary Pten(∆):p53(∆) vs. Pten(∆):p53(R270H) spindle tumor cells with 1120 FDA-approved drugs identified 8-azaguanine as most potent for both tumor types, but found no allele-specific inhibitor. A gene set enrichment analysis revealed increased expression of a metastasis pathway in Pten(∆):p53(R270H) vs. Pten(∆):p53(∆) spindle tumors. Accordingly, following tail vein injection, both Pten(∆):p53(R270H) spindle and PDA tumor cells induced lung metastases and morbidity significantly faster than Pten(∆):p53(∆) double-deletion cells, and this was associated with the ability of Pten(∆):p53(R270H) tumor cells to upregulate E-cadherin expression in lung metastases. CONCLUSIONS: Our results demonstrate that WAP-Cre:Pten(f/f):p53(lox.stop.lox_R270H) mice represent a tractable model to study basal-like breast cancer because unlike p53 deletion, p53(R270H) mutation in the mouse does not skew tumors toward the claudin-low subtype. The WAP-Cre:Pten(f/f):p53(lox.stop.lox_R270H) mice develop basal-like breast cancer that is enriched in TICs, can readily form lung metastasis, and provides a preclinical model to study both basal-like and claudin-low TNBC in immune-competent mice.


Asunto(s)
Neoplasias Mamarias Animales/genética , Neoplasias Basocelulares/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Cadherinas/genética , Claudinas/genética , Epitelio/metabolismo , Epitelio/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Neoplasias Mamarias Animales/patología , Ratones , Neoplasias Basocelulares/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosfohidrolasa PTEN/metabolismo , Embarazo , Eliminación de Secuencia/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(15): 5832-7, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22460789

RESUMEN

Human Epidermal Growth Factor Receptor 2-positive (HER2(+)) breast cancer (BC) is a highly aggressive disease commonly treated with chemotherapy and anti-HER2 drugs, including trastuzumab. There is currently no way to predict which HER2(+) BC patients will benefit from these treatments. Previous prognostic signatures for HER2(+) BC were developed irrespective of the subtype or the hierarchical organization of cancer in which only a fraction of cells, tumor-initiating cells (TICs), can sustain tumor growth. Here, we used serial dilution and single-cell transplantation assays to identify MMTV-Her2/Neu mouse mammary TICs as CD24(+):JAG1(-) at a frequency of 2-4.5%. A 17-gene Her2-TIC-enriched signature (HTICS), generated on the basis of differentially expressed genes in TIC versus non-TIC fractions and trained on one HER2(+) BC cohort, predicted clinical outcome on multiple independent HER2(+) cohorts. HTICS included up-regulated genes involved in S/G2/M transition and down-regulated genes involved in immune response. Its prognostic power was independent of other predictors, stratified lymph node(+) HER2(+) BC into low and high-risk subgroups, and was specific for HER2(+):estrogen receptor alpha-negative (ERα(-)) patients (10-y overall survival of 83.6% for HTICS(-) and 24.0% for HTICS(+) tumors; hazard ratio = 5.57; P = 0.002). Whereas HTICS was specific to HER2(+):ERα(-) tumors, a previously reported stroma-derived signature was predictive for HER2(+):ERα(+) BC. Retrospective analyses revealed that patients with HTICS(+) HER2(+):ERα(-) tumors resisted chemotherapy but responded to chemotherapy plus trastuzumab. HTICS is, therefore, a powerful prognostic signature for HER2(+):ERα(-) BC that can be used to identify high risk patients that would benefit from anti-HER2 therapy.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/metabolismo , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias/genética , Células Madre Neoplásicas/patología , Receptor ErbB-2/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Antígeno CD24/metabolismo , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/metabolismo , Ratones , Terapia Neoadyuvante , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Pronóstico , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos , Trastuzumab , Resultado del Tratamiento
3.
Cancers (Basel) ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38001575

RESUMEN

The metastasis of tumor cells into vital organs is a major cause of death from diverse types of malignancies [...].

4.
Nat Commun ; 14(1): 4313, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463901

RESUMEN

Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFß and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Animales , Ratones , Neoplasias de la Mama/patología , Transducción de Señal , Metástasis de la Neoplasia
5.
Hepatol Commun ; 6(4): 821-840, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34792289

RESUMEN

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single-cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation-related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at a single-cell resolution, revealed the presence of rare subtypes of liver mesenchymal cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an independent spatial transcriptomics data set and immunohistochemistry. Conclusion: Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


Asunto(s)
Hígado , Análisis de la Célula Individual , Núcleo Celular/genética , Humanos , Análisis de Secuencia de ARN , Transcriptoma/genética
6.
Cancer Discov ; 12(12): 2930-2953, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36108220

RESUMEN

Systematically investigating the scores of genes mutated in cancer and discerning disease drivers from inconsequential bystanders is a prerequisite for precision medicine but remains challenging. Here, we developed a somatic CRISPR/Cas9 mutagenesis screen to study 215 recurrent "long-tail" breast cancer genes, which revealed epigenetic regulation as a major tumor-suppressive mechanism. We report that components of the BAP1 and COMPASS-like complexes, including KMT2C/D, KDM6A, BAP1, and ASXL1/2 ("EpiDrivers"), cooperate with PIK3CAH1047R to transform mouse and human breast epithelial cells. Mechanistically, we find that activation of PIK3CAH1047R and concomitant EpiDriver loss triggered an alveolar-like lineage conversion of basal mammary epithelial cells and accelerated formation of luminal-like tumors, suggesting a basal origin for luminal tumors. EpiDriver mutations are found in ∼39% of human breast cancers, and ∼50% of ductal carcinoma in situ express casein, suggesting that lineage infidelity and alveogenic mimicry may significantly contribute to early steps of breast cancer etiology. SIGNIFICANCE: Infrequently mutated genes comprise most of the mutational burden in breast tumors but are poorly understood. In vivo CRISPR screening identified functional tumor suppressors that converged on epigenetic regulation. Loss of epigenetic regulators accelerated tumorigenesis and revealed lineage infidelity and aberrant expression of alveogenesis genes as potential early events in tumorigenesis. This article is highlighted in the In This Issue feature, p. 2711.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/patología , Epigénesis Genética , Recurrencia Local de Neoplasia/genética , Carcinoma Intraductal no Infiltrante/genética , Transformación Celular Neoplásica/genética
7.
Clin Cancer Res ; 15(1): 119-30, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19118039

RESUMEN

PURPOSE: N,N-Diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine (DPPE; tesmilifene) is thought to potentiate the antineoplastic effect of cytotoxic drugs. In a phase III randomized trial for metastatic breast cancer using doxorubicin with or without DPPE, addition of the latter resulted in a significant improvement in overall survival and a trend toward a difference in progression-free survival but, paradoxically, no difference in objective tumor response. Here we tested the hypothesis that DPPE targets breast tumor-initiating cells (TICs). EXPERIMENTAL DESIGN: Human breast TICs from pleural effusions were identified as CD44(+):CD24(-/low) cells by flow cytometry and functionally by their ability to form nonadherent spheres in culture. Mouse mammary TICs from two different models of breast cancer were identified as cells capable of initiating spheres in culture and secondary tumors following transplantation into the mammary gland of syngeneic mice. RESULTS: We show that at physiologically attainable concentrations, treatment with DPPE alone reduced tumorsphere formation and viability of CD44(+):CD24(-/low) breast cancer cells. The kinetics of killing varied for the different breast tumor cells and required continuous exposure to the drug. Whereas doxorubicin killed CD44(+):CD24(-/low) and CD44(-):CD24(+) cells equally well, DPPE induced apoptosis preferentially in CD44(+):CD24(-/low) cells. Treatment of Her2/Neu(+) mammary tumor cells with DPPE in vitro efficiently killed TICs, as determined by flow cytometry and transplantation assays; DPPE further cooperated with doxorubicin to completely eradicate tumorigenic cells. CONCLUSIONS: Our results show that continuous treatment with DPPE alone directly targets breast TICs, and provide rationale to test for cooperation between DPPE and known drugs with efficacy toward breast cancer subtypes.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Antígeno CD24/metabolismo , Receptores de Hialuranos/metabolismo , Neoplasias Mamarias Experimentales/patología , Éteres Fenílicos/farmacología , Derrame Pleural Maligno/patología , Animales , Neoplasias de la Mama/metabolismo , Adhesión Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Ratones , Trasplante de Neoplasias
8.
Cell Stem Cell ; 27(2): 254-269.e9, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640183

RESUMEN

Liver sinusoidal endothelial cells (LSECs) form a highly specialized microvasculature that plays a critical role in liver function and disease. To better understand this role, we developed a strategy to generate LSECs from human pluripotent stem cells (hPSCs) by first optimizing the specification of arterial and venous angioblasts and derivative endothelial populations. Induction of a LSEC-like fate by hypoxia, cyclic AMP (cAMP) agonism, and transforming growth factor ß (TGF-ß) inhibition revealed that venous endothelial cells responded more rapidly and robustly than the arterial cells to upregulate LSEC markers and functions in vitro. Upon intrahepatic transplantation in neonates, venous angioblasts engrafted the liver and generated mature, fenestrated LSECs with scavenger functions and molecular profiles of primary human LSECs. When transplanted into the liver of adult mice, angioblasts efficiently gave rise to mature LSECs with robust factor VIII (FVIII) production. Humanization of the murine liver with hPSC-derived LSECs provides a tractable system for studying the biology of this key liver cell type.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes , Animales , Hepatocitos , Humanos , Hígado , Ratones , Factor de Crecimiento Transformador beta
9.
Nat Commun ; 11(1): 1825, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286280

RESUMEN

Pineoblastoma is a rare pediatric cancer induced by germline mutations in the tumor suppressors RB1 or DICER1. Presence of leptomeningeal metastases is indicative of poor prognosis. Here we report that inactivation of Rb plus p53 via a WAP-Cre transgene, commonly used to target the mammary gland during pregnancy, induces metastatic pineoblastoma resembling the human disease with 100% penetrance. A stabilizing mutation rather than deletion of p53 accelerates metastatic dissemination. Deletion of Dicer1 plus p53 via WAP-Cre also predisposes to pineoblastoma, albeit with lower penetrance. In silico analysis predicts tricyclic antidepressants such as nortriptyline as potential therapeutics for both pineoblastoma models. Nortriptyline disrupts the lysosome, leading to accumulation of non-functional autophagosome, cathepsin B release and pineoblastoma cell death. Nortriptyline further synergizes with the antineoplastic drug gemcitabine to effectively suppress pineoblastoma in our preclinical models, offering new modality for this lethal childhood malignancy.


Asunto(s)
Mutación de Línea Germinal/genética , Lisosomas/metabolismo , Pinealoma/tratamiento farmacológico , Pinealoma/genética , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Análisis por Conglomerados , Modelos Animales de Enfermedad , Eliminación de Gen , Humanos , Integrasas/metabolismo , Estimación de Kaplan-Meier , Lisosomas/efectos de los fármacos , Ratones , Metástasis de la Neoplasia , Nortriptilina/farmacología , Nortriptilina/uso terapéutico , Pinealoma/patología , Pinealoma/ultraestructura , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
10.
Cancer Res ; 67(18): 8671-81, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17875707

RESUMEN

A variety of human malignancies, including breast cancer, are thought to be organized in a hierarchy, whereby a relatively minor population of tumor initiating cells (TIC) is responsible for tumor growth and the vast majority of remaining cells is nontumorigenic. Analysis of TICs in model systems of breast cancer would offer uniform and accessible source of tumor cells and the power of mouse genetics to dissect these rare cells. The HER2/Neu proto-oncogene is overexpressed in an aggressive form of human breast cancer. Mouse mammary tumor virus (MMTV)-Neu transgenic mice develop mammary tumors that mimic human HER2 subtype breast cancer. Here, we report on the functional identification of mouse HER2/Neu TICs that can induce tumors after transplantation into the mammary gland of recipient mice. Secondary tumors formed after injecting MMTV-Neu TICs resemble primary tumors in the original transgenic mice and are organized in a hierarchy containing TICs as well as their nontumorigenic descendants. To study MMTV-Neu TICs in vitro, we grew tumorspheres under nonadherent culture conditions. Tumorsphere forming units (TFU) capable of producing tumorspheres retained tumorigenic potential and were indistinguishable by several criteria from TICs. Interestingly, MMTV-Neu TICs and TFUs were committed to the luminal cell fate when induced to differentiate in vitro. Our data define reproducible characteristics of the MMTV-Neu TIC and TFU, which help to explain marker expression profiles of HER2-positive breast cancer. In addition, the similarity between TICs and TFUs in this system provides a rationale for TFU-based screens to target tumor-initiating cells in HER2(+) breast cancer.


Asunto(s)
Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/patología , Receptor ErbB-2/biosíntesis , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Procesos de Crecimiento Celular/genética , Transformación Celular Viral/genética , Doxorrubicina/farmacología , Citometría de Flujo , Genes erbB-2 , Neoplasias Mamarias Experimentales/genética , Virus del Tumor Mamario del Ratón/genética , Ratones , Ratones Transgénicos , Proto-Oncogenes Mas , Receptor ErbB-2/genética , Proteína Wnt1/genética
11.
Mol Cell Oncol ; 5(4): e1481814, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250928

RESUMEN

The dual phosphatase CDC25 has recently been identified as a target for diverse triple-negative breast cancers including RB1/PTEN/P53-deficient tumors. Moreover, CDC25 inhibitors effectively synergize with PI3K inhibitors to suppress tumor growth. We discuss these findings and the challenges that lie ahead in bringing CDC25 inhibitors to the clinic.

12.
Cell Rep ; 23(1): 112-126, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617654

RESUMEN

CDK4/6 inhibitors are effective against cancer cells expressing the tumor suppressor RB1, but not RB1-deficient cells, posing the challenge of how to target RB1 loss. In triple-negative breast cancer (TNBC), RB1 and PTEN are frequently inactivated together with TP53. We performed kinome/phosphatase inhibitor screens on primary mouse Rb/p53-, Pten/p53-, and human RB1/PTEN/TP53-deficient TNBC cell lines and identified CDC25 phosphatase as a common target. Pharmacological or genetic inhibition of CDC25 suppressed growth of RB1-deficient TNBC cells that are resistant to combined CDK4/6 plus CDK2 inhibition. Minimal cooperation was observed in vitro between CDC25 antagonists and CDK1, CDK2, or CDK4/6 inhibitors, but strong synergy with WEE1 inhibition was apparent. In accordance with increased PI3K signaling following long-term CDC25 inhibition, CDC25 and PI3K inhibitors effectively synergized to suppress TNBC growth both in vitro and in xenotransplantation models. These results provide a rationale for the development of CDC25-based therapies for diverse RB1/PTEN/TP53-deficient and -proficient TNBCs.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fosfatasas cdc25/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
13.
Nat Commun ; 9(1): 4383, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348985

RESUMEN

The liver is the largest solid organ in the body and is critical for metabolic and immune functions. However, little is known about the cells that make up the human liver and its immune microenvironment. Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human hepatic immune microenvironment.


Asunto(s)
Hígado/citología , Hígado/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Linfocitos B/citología , Linfocitos B/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Monocitos/citología , Monocitos/metabolismo , Análisis de Secuencia de ARN
14.
JCI Insight ; 2(15)2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28768903

RESUMEN

The tumor suppressor PTEN is frequently inactivated in breast and other cancers; yet, germ-line mutations in this gene induce nonmalignant hamartomas, indicating dependency on additional cooperating events. Here we show that most tumors derived from conditional deletion of mouse pten in mammary epithelium are highly differentiated and lack transplantable tumor-initiating cells (TICs) capable of seeding new tumors following orthotopic injection of FACS-sorted or tumorsphere cells. A rare group of poorly differentiated tumors did harbor transplantable TICs. These transplantable tumors exhibited distinct molecular classification, signaling pathways, chromosomal aberrations, and mutational landscape, as well as reduced expression of microRNA-143/145 (miR-143/145). Stable knockdown of miR-143/145 conferred tumorigenic potential upon poorly transplantable pten-deficient tumor cells through a mechanism involving induction of RAS signaling, leading to increased sensitivity to MEK inhibition. In humans, miR-145 deficiency significantly correlated with elevated RAS-pathway activity in basal-like breast cancer, and patients with combined PTEN/miR-145 loss or PTEN-loss/high RAS-pathway activity exhibited poor clinical outcome. These results underscore a selective pressure for combined PTEN loss together with RAS-pathway activation, either through miR-145 loss or other mechanisms, in basal-like breast cancer, and a need to identify and prioritize these tumors for aggressive therapy.

15.
Trends Cancer ; 3(11): 768-779, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29120753

RESUMEN

A switch from catabolic to anabolic metabolism, a major hallmark of cancer, enables rapid cell duplication, and is driven by multiple oncogenic alterations, including PIK3CA mutation, MYC amplification, and TP53 loss. However, tumor growth requires active mitochondrial function and oxidative phosphorylation (OXPHOS). Recently, loss of the retinoblastoma (RB1) tumor suppressor in breast cancer was shown to induce mitochondrial protein translation (MPT) and OXPHOS. Here, we discuss how increased OXPHOS can enhance anabolic metabolism and cell proliferation, as well as cancer stemness and metastasis. Mitochondrial STAT3, FER/FER-T, and CHCHD2 are also implicated in OXPHOS. We propose that RB1 loss represents a prototypic oncogenic alteration that promotes OXPHOS, that aggressive tumors acquire lethal combinations of oncogenes and tumor suppressors that stimulate anabolism versus OXPHOS, and that targeting both metabolic pathways would be therapeutic.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Ubiquitina-Proteína Ligasas/genética , Anabolizantes/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Glucólisis/genética , Humanos , Mitocondrias/genética , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , Fosforilación Oxidativa , Proteínas de Unión a Retinoblastoma/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia
16.
Oncotarget ; 7(8): 9060-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26814435

RESUMEN

PTEN loss and PIK3CA activation both promote the accumulation of phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3). While these proteins also have distinct biochemical functions, beyond the regulation of PIP3, little is known about the consequences of these differences in vivo. Here, we directly compared cancer signalling in mammary tumors from MMTV-Cre:Ptenf/f and MMTV-Cre:Pik3ca(LSL-H1047R) mice. Using unsupervised hierarchical clustering we found that whereas MMTV-Cre:Pik3ca(LSL-H1047R)-derived tumors fall into two separate groups, designated squamous-likeEx and class14(Ex), MMTV-Cre:Ptenf/f tumors cluster as one group together with PIK3CA(H1047R) class14(Ex), exhibiting a 'luminal' expression profile. Gene Set Enrichment Analysis (GSEA) of Pten(Δ)ˆ† and PIK3CA(H1047R) class14(Ex) tumors revealed very similar profiles of signalling pathways as well as some interesting differences. Analysis of 18 signalling signatures revealed that PI3K signalling is significantly induced whereas EGFR signalling is significantly reduced in Pten(∆) versus PIK3CA(H1047R) tumors. Thus, Pten(∆) and PIK3CA(H1047R) tumors exhibit discernable differences that may impact tumorigenesis and response to therapy.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Mamarias Experimentales/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase I , Receptores ErbB/metabolismo , Neoplasias Mamarias Experimentales/clasificación , Neoplasias Mamarias Experimentales/patología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo
17.
J Clin Invest ; 126(10): 3739-3757, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27571409

RESUMEN

Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low-like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration-approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Proteínas de Unión a Retinoblastoma/deficiencia , Neoplasias de la Mama Triple Negativas/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Línea Celular Tumoral , Femenino , Amplificación de Genes , Humanos , Ratones Transgénicos , Proteínas Mitocondriales/metabolismo , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Unión a Retinoblastoma/genética , Activación Transcripcional , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética
18.
Oncotarget ; 6(35): 36943-54, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26460950

RESUMEN

Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Interleucinas/fisiología , Neoplasias Mamarias Animales/patología , Virus del Tumor Mamario del Ratón/genética , Receptor ErbB-2/fisiología , Animales , Apoptosis , Femenino , Humanos , Técnicas para Inmunoenzimas , Neoplasias Mamarias Animales/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Cancer Res ; 75(22): 4960-72, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26400062

RESUMEN

Breast cancer is associated with alterations in a number of growth factor and hormone-regulated signaling pathways. Mouse models of metastatic breast cancer typically feature mutated oncoproteins that activate PI3K, Stat3, and Ras signaling, but the individual and combined roles of these pathways in breast cancer progression are poorly understood. In this study, we examined the relationship between oncogenic pathway activation and breast cancer subtype by analyzing mouse mammary tumor formation in which each pathway was activated singly or pairwise. All three oncogenes showed cooperation during primary tumor formation, but efficient dissemination was only dependent on Ras. In addition, transcriptional profiling demonstrated that Ras induced adenocarcinomas with molecular characteristics related to human basal-like and HER2(+) tumors. In contrast, Ras combined with PIK3CA(H1047R), an oncogenic mutant linked to ERα(+)/luminal breast cancer in humans, induced metastatic luminal B-like tumors. Consistent with these data, elevated Ras signaling was associated with basal-like and HER2(+) subtype tumors in humans and showed a statistically significant negative association with estrogen receptor (ER) signaling across all breast cancer. Despite this, there are luminal tumors with elevated Ras signaling. Importantly, when considered as a continuous variable, Ras pathway activation was strongly linked to reduced survival of patients with ERα(+) disease independent of PI3K or Stat3 activation. Therefore, our studies suggest that Ras activation is a key determinant for dissemination and poor prognosis of ERα(+)/luminal breast cancer in humans, and hormone therapy supplemented with Ras-targeting agents may be beneficial for treating this aggressive subtype.


Asunto(s)
Neoplasias de la Mama/patología , Invasividad Neoplásica/patología , Transducción de Señal/fisiología , Proteínas ras/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Supervivencia sin Enfermedad , Femenino , Inmunohistoquímica , Estimación de Kaplan-Meier , Ratones , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Oncoscience ; 1(2): 180-2, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25594009

RESUMEN

HER2(+) breast cancer (BC) is a highly aggressive subtype, affecting ~20% of BC patients. Current treatments include adjuvant or neoadjuvant chemotherapy plus anti-HER2 agents such as trastuzumab, a monoclonal antibody directed against HER2. Despite improvement in disease free survival, most patients eventually succumb to metastatic disease, which is largely incurable. Consequently, there is an urgent need to identify novel drugs that can efficiently kill HER2(+) BC and/or potentiate the effect of existing anti-HER2 therapies. We performed a lenti-viral shRNA kinome screen on non-adherent mouse Her2/Neu tumorspheres and identified TBK1, a non-canonical IκB kinase (IKK), as the most potent target [1]. TBK1 knock-down, or treatment with TBK1-II, a drug that efficiently inhibits TBK1 and its close relative IKKε (IKBKE), suppressed growth of human HER2(+) BC cells and induced cellular senescence. Senescence was associated with inhibition of phosphorylated/active p65-NFkB and induction of the cell cycle inhibitor, p16(ink4a). In addition, TBK1-II cooperated with lapatinib, a EGFR/HER2 inhibitor, to accelerate apoptosis in vitro and suppress tumor growth in a xenograft model of HER2(+) BC. Thus, TBK1/IKKε inhibitors may improve treatment of HER2(+) BC in cooperation with anti-HER2 therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA