Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 115(4): 910-925, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37133286

RESUMEN

Mesocotyl length (ML) is a crucial factor in determining the establishment and yield of rice planted through dry direct seeding, a practice that is increasingly popular in rice production worldwide. ML is determined by the endogenous and external environments, and inherits as a complex trait. To date, only a few genes have been cloned, and the mechanisms underlying mesocotyl elongation remain largely unknown. Here, through a genome-wide association study using sequenced germplasm, we reveal that natural allelic variations in a mitochondrial transcription termination factor, OsML1, predominantly determined the natural variation of ML in rice. Natural variants in the coding regions of OsML1 resulted in five major haplotypes with a clear differentiation between subspecies and subpopulations in cultivated rice. The much-reduced genetic diversity of cultivated rice compared to the common wild rice suggested that OsML1 underwent selection during domestication. Transgenic experiments and molecular analysis demonstrated that OsML1 contributes to ML by influencing cell elongation primarily determined by H2 O2 homeostasis. Overexpression of OsML1 promoted mesocotyl elongation and thus improved the emergence rate under deep direct seeding. Taken together, our results suggested that OsML1 is a key positive regulator of ML, and is useful in developing varieties for deep direct seeding by conventional and transgenic approaches.


Asunto(s)
Oryza , Oryza/genética , Estudio de Asociación del Genoma Completo , Secuencia de Bases , Variación Genética
2.
Plant Dis ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587804

RESUMEN

Lantian 26, a leading elite winter wheat cultivar in Gansu Province since its release in 2010, exhibits high resistance or immunization to stripe rust in adult-plant stage under a high disease pressure in Longnan (southeastern Gansu). Identifying the resistance genes in Lantian 26 could provide a basis for enhanced durability and high levels of resistance in wheat cultivars. Here, a segregating population was developed from a cross between a highly susceptible wheat cv. Mingxian 169 and the highly stripe rust-resistant cv. Lantian 26. The F2 and F2:3 progenies of the cross were inoculated with multiple prevalent virulent races of stripe rust for adult plant-stage resistance evaluation in two different environments. Exon sequence alignment analysis revealed that a stripe rust resistance gene on the 718.4-721.2 Mb region of chromosome 7BL, tentatively named as YrLT26, and a co-segregation STS marker GY17 was developed and validated using the F2:3 population and 103 wheat cultivars. The other two resistance genes, Yr9 and Yr30, were also identified in Lantian 26 using molecular markers. Therefore, the key to high and durable resistance to stripe rust at adult stage is the combination of Yr9, Yr30 and YrLT26 genes in Lantian 26. This could be a considerable strategy for improving the wheat cultivars with effective and durable resistance in the high-pressure region for stripe rust.

3.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732782

RESUMEN

In robot-assisted microsurgery (RAMS), surgeons often face the challenge of operating with minimal feedback, particularly lacking in haptic feedback. However, most traditional desktop haptic devices have restricted operational areas and limited dexterity. This report describes a novel, lightweight, and low-budget wearable haptic controller for teleoperated microsurgical robotic systems. We designed a wearable haptic interface entirely made using off-the-shelf material-PolyJet Photopolymer, fabricated using liquid and solid hybrid 3D co-printing technology. This interface was designed to resemble human soft tissues and can be wrapped around the fingertips, offering direct contact feedback to the operator. We also demonstrated that the device can be easily integrated with our motion tracking system for remote microsurgery. Two motion tracking methods, marker-based and marker-less, were compared in trajectory-tracking experiments at different depths to find the most effective motion tracking method for our RAMS system. The results indicate that within the 4 to 8 cm tracking range, the marker-based method achieved exceptional detection rates. Furthermore, the performance of three fusion algorithms was compared to establish the unscented Kalman filter as the most accurate and reliable. The effectiveness of the wearable haptic controller was evaluated through user studies focusing on the usefulness of haptic feedback. The results revealed that haptic feedback significantly enhances depth perception for operators during teleoperated RAMS.


Asunto(s)
Microcirugia , Procedimientos Quirúrgicos Robotizados , Dispositivos Electrónicos Vestibles , Humanos , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos , Microcirugia/instrumentación , Algoritmos , Robótica/instrumentación , Diseño de Equipo , Impresión Tridimensional
4.
Theor Appl Genet ; 136(7): 167, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402103

RESUMEN

KEY MESSAGE: We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars. Plant height is an important agronomic trait, and appropriately reduced height can improve yield potential and stability in wheat, usually combined with sufficient water and fertilizer. We previously detected a stable major-effect quantitative trait locus QPH.caas-5AL for plant height on chromosome 5A in a recombinant inbred line population of the cross 'Doumai × Shi 4185' using the wheat 90 K SNP assay. Here , QPH.caas-5AL was confirmed using new phenotypic data in additional environment and new-developed markers. We identified nine heterozygous recombinant plants for fine mapping of QPH.caas-5AL and developed 14 breeder-friendly kompetitive allele-specific PCR markers in the region of QPH.caas-5AL based on the genome re-sequencing data of parents. Phenotyping and genotyping analyses of secondary populations derived from the self-pollinated heterozygous recombinant plants delimited QPH.caas-5AL into an approximate 3.0 Mb physical region (521.0-524.0 Mb) according to the Chinese Spring reference genome. This region contains 45 annotated genes, and six of them were predicted as the candidates of QPH.caas-5AL based on genome and transcriptome sequencing analyses. We further validated that QPH.caas-5AL has significant effects on plant height but not yield component traits in a diverse panel of wheat cultivars; its dwarfing allele is frequently used in modern wheat cultivars. These findings lay a solid foundation for the map-based cloning of QPH.caas-5AL and also provide a breeding-applicable tool for its marker-assisted selection. Keymessage We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Fitomejoramiento , Mapeo Cromosómico , Fenotipo , Cromosomas
5.
BMC Anesthesiol ; 23(1): 383, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996789

RESUMEN

BACKGROUND: The aim of this study was to compare the efficacy of ultrasound-guided PENG (pericapsular nerve group) block and drug therapy with intravenous flurbiprofen for early analgesia in elderly patients with hip fractures after hospitalization. METHODS: This is a single-center, observer-blinded, prospective, randomized, controlled trial. A total of 41 elderly patients (aged 60 or older) with hip fractures were enrolled in the current study. Patients were randomly assigned to two groups: Group P (ultrasound-guided PENG block, 20 mL of 0.375% ropivacaine) and Group F (intravenous flurbiprofen 50 mg). The primary outcome measure was the dynamic (passive straight leg raising 15°) NRS (numerical rating scale 0 to 10) pain scores at different time points. The secondary outcomes were the static NRS scores at different time points, the number of rescue analgesia sessions, patient satisfaction, and the incidence of complications. RESULTS: Patients in the two groups had comparable baseline characteristics. The group P had lower dynamic and static NRS scores at 15 min, 30 min, 6 h, and 12 h after intervention (P<0.05) than the group F. The highest NRS pain scores in the group P were still lower than the NRS scores in the group F at 30 min-12 h (Group F: 5.57±1.54 vs. Group P: 3.00±1.12, P<0.001), and there was no significant difference between the two groups at 12-24 h (Group F: 6.35±1.79 vs. Group P: 5.90±1.83, P>0.05). The group P had higher satisfaction scores (Group P: 9 (9,9) vs. Group F: 8 (7,8), P<0.001). There was no statistically significant difference in the number of rescue analgesics at 0-12 h or 12-24 h or the incidence of complications between the groups. CONCLUSIONS: Compared with intravenous flurbiprofen, ultrasound-guided PENG block provides better early analgesic effects in elderly patients with hip fractures, and a PENG block is safe for elderly patients with hip fractures after hospitalization. Trial registration This study was registered in the Chinese Clinical Trial Testing Center (ID: ChiCTR2200062400).


Asunto(s)
Analgesia , Flurbiprofeno , Fracturas de Cadera , Anciano , Humanos , Flurbiprofeno/uso terapéutico , Estudios Prospectivos , Nervio Femoral , Dolor Postoperatorio/tratamiento farmacológico , Fracturas de Cadera/cirugía , Ultrasonografía Intervencional
6.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139569

RESUMEN

Small intestinal stromal tumor (SIST) is a common gastrointestinal tumor. Currently, SIST diagnosis relies on clinical radiologists reviewing CT images from medical imaging sensors. However, this method is inefficient and greatly affected by subjective factors. The automatic detection method for stromal tumors based on computer vision technology can better solve these problems. However, in CT images, SIST have different shapes and sizes, blurred edge texture, and little difference from surrounding normal tissues, which to a large extent challenges the use of computer vision technology for the automatic detection of stromal tumors. Furthermore, there are the following issues in the research on the detection and recognition of SIST. After analyzing mainstream target detection models on SIST data, it was discovered that there is an imbalance in the features at different levels during the feature fusion stage of the network model. Therefore, this paper proposes an algorithm, based on the attention balance feature pyramid (ABFP), for detecting SIST with unbalanced feature fusion in the target detection model. By combining weighted multi-level feature maps from the backbone network, the algorithm creates a balanced semantic feature map. Spatial attention and channel attention modules are then introduced to enhance this map. In the feature fusion stage, the algorithm scales the enhanced balanced semantic feature map to the size of each level feature map and enhances the original feature information with the original feature map, effectively addressing the imbalance between deep and shallow features. Consequently, the SIST detection model's detection performance is significantly improved, and the method is highly versatile. Experimental results show that the ABFP method can enhance traditional target detection methods, and is compatible with various models and feature fusion strategies.


Asunto(s)
Algoritmos , Neoplasias , Humanos , Reconocimiento en Psicología , Semántica
7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047087

RESUMEN

Seed dormancy is a key factor used to determine seed germination in rice production. So far, only a few genes controlling seed dormancy have been reported, and the genetic mechanism of rice seed dormancy is still elusive. In this study, a population of 195 diverse re-sequenced accessions from 40 countries was evaluated for the seed germination rate (GR) without dormancy breaking (WDB) as a control and under dry heating (DH) and gibberellic acid (GA) treatments, as dormancy breaking agents to identify QTLs for seed dormancy. Phenotypic assessment revealed that these accessions had abundant variations in seed dormancy. GWAS using 1,120,223 high-quality single nucleotide polymorphisms (SNPs) and a mixed linear model (MLM) incorporating both principal components (PCs) and kinship (K) identified 30 QTLs on 10 chromosomes, accounting for 7.3-20.4% of the phenotypic variance in GR. Ten of the QTLs were located in the regions of previously reported QTLs, while the rest were novel ones. Thirteen high-confidence candidate genes were predicted for the four QTLs detected in two or three conditions (qGR4-4, qGR4-5, qGR8 and qGR11-4) and one QTL with a large effect (qGR3). These genes were highly expressed during seed development and were significantly regulated by various hormone treatments. This study provides new insights into the genetic and molecular basis of rice seed dormancy/germination. The accessions with moderate and strong dormancy and markers for the QTLs and candidate genes are useful for attaining a proper level of seed dormancy.


Asunto(s)
Oryza , Latencia en las Plantas , Latencia en las Plantas/genética , Estudio de Asociación del Genoma Completo , Mapeo Cromosómico , Oryza/genética , Sitios de Carácter Cuantitativo , Semillas/genética
8.
Educ Inf Technol (Dordr) ; 27(6): 8903, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250353

RESUMEN

[This corrects the article DOI: 10.1007/s10639-021-10688-9.].

9.
Educ Inf Technol (Dordr) ; 27(2): 1705-1723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34366691

RESUMEN

To tackle the debate surrounding the tension between knowledge and power in online education for adolescents and between freedom and control at large, this study examines how disciplinary power was exercised and resisted in a Chinese setting of online compulsory education during the COVID-19 outbreak in 2020. Overall, 60 participants, including students (from Grade 7 to 12), their parents, and teachers joined in our focus groups or individual interviews in a secondary school in Xi'an, China. By following Foucault's concepts of three techniques of disciplinary power: hierarchical observation, normalizing judgement and examination, we identified four themes based on the data: (1) diminished discipline with the dissolving boundary, (2) reconfigured disciplinary power by teachers, (3) self-discipline as a vital skill, and (4) online compulsory education as a future trend. Interpretations from the Foucauldian perspective were presented, suggesting that most adolescents depend upon more external disciplines from schools and teachers, while only a few may achieve autonomy through self-discipline.

10.
BMC Plant Biol ; 21(1): 542, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800993

RESUMEN

BACKGROUND: Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. RESULTS: In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P < 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 °C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. CONCLUSION: This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.


Asunto(s)
Frío , Respuesta al Choque por Frío/genética , Flores/crecimiento & desarrollo , Flores/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo
11.
Theor Appl Genet ; 133(8): 2431-2450, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32451598

RESUMEN

KEY MESSAGE: We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.


Asunto(s)
Adaptación Fisiológica/genética , Mapeo Cromosómico/métodos , Fitomejoramiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Triticum/genética , Alelos , Harina/normas , Genes de Plantas , Marcadores Genéticos , Genotipo , Germinación , Fenotipo , Sitios de Carácter Cuantitativo , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/fisiología , Triticum/crecimiento & desarrollo , Triticum/metabolismo
12.
Theor Appl Genet ; 133(10): 2897-2914, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32594265

RESUMEN

KEY MESSAGE: GWAS identified 36 potentially new loci for wheat stem water-soluble carbohydrate (WSC) contents and 13 pleiotropic loci affecting WSC and thousand-kernel weight. Five KASP markers were developed and validated. Water-soluble carbohydrates (WSC) reserved in stems contribute significantly to grain yield (GY) in wheat. However, knowledge of the genetic architecture underlying stem WSC content (SWSCC) is limited. In the present study, 166 diverse wheat accessions from the Yellow and Huai Valleys Winter Wheat Zone of China and five other countries were grown in four well-watered environments. SWSCC at 10 days post-anthesis (10DPA), 20DPA and 30DPA, referred as WSC10, WSC20 and WSC30, respectively, and thousand-kernel weight (TKW) were assessed. Correlation analysis showed that TKW was significantly and positively correlated with WSC10 and WSC20. Genome-wide association study was performed on SWSCC and TKW with 373,106 markers from the wheat 660 K and 90 K SNP arrays. Totally, 62 stable loci were detected for SWSCC, with 36, 24 and 19 loci for WSC10, WSC20 and WSC30, respectively; among these, 36 are potentially new, 16 affected SWSCC at two or three time-points, and 13 showed pleiotropic effects on both SWSCC and TKW. Linear regression showed clear cumulative effects of favorable alleles for increasing SWSCC and TKW. Genetic gain analyses indicated that pyramiding favorable alleles of SWSCC had simultaneously improved TKW. Kompetitive allele-specific PCR markers for five pleiotropic loci associated with both SWSCC and TKW were developed and validated. This study provided a genome-wide landscape of the genetic architecture of SWSCC, gave a perspective for understanding the relationship between WSC and GY and explored the theoretical basis for co-improvement of WSC and GY. It also provided valuable loci and markers for future breeding.


Asunto(s)
Carbohidratos/análisis , Triticum/genética , Alelos , Frecuencia de los Genes , Estudios de Asociación Genética , Marcadores Genéticos , Pleiotropía Genética , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Mapeo Físico de Cromosoma , Tallos de la Planta/química , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Agua
13.
Plant Dis ; 104(8): 2174-2180, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32452749

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a globally devastating disease of common wheat (Triticum aestivum L.), resulting in substantial economic losses. To identify effective resistance genes, a genome-wide association study was conducted on 120 common wheat lines from different wheat-growing regions of China using the wheat 90K iSelect SNP array. Seventeen loci were identified, explaining 9.5 to 21.8% of the phenotypic variation. Most of these genes were detected in the A (seven) and B (seven) genomes, with only three in the D genome. Among them, 11 loci were colocated with known resistance genes or quantitative trait loci reported previously, whereas the other six are likely new resistance loci. Annotation of flanking sequences of significantly associated SNPs indicated the presence of three important candidate genes, including E3 ubiquitin-protein ligase, F-box repeat protein, and disease resistance RPP13-like protein. This study increased our knowledge in understanding the genetic architecture for stripe rust resistance and identified wheat varieties with multiple resistance alleles, which are useful for improvement of stripe rust resistance in breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum/genética , China , Desequilibrio de Ligamiento , Enfermedades de las Plantas
14.
J Cell Biochem ; 120(5): 8723-8730, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30536412

RESUMEN

BACKGROUND: Small-cell lung cancer (SCLC) is one of the most aggressive cancers with mechanisms far from understood. OBJECTIVE: We proposed to identify valuable prognostic signature for SCLC prognosis prediction. METHODS: microRNA (miRNA) expression profiles of 42 SCLC patients were acquired from the Gene Expression Omnibus. miRNAs that significantly associated with SCLC overall survival (OS-relevant) were identified through univariate Cox regression analysis followed by random survival forest analysis for identification of more reliable miRNA signature. RESULTS: Eleven OS-relevant miRNAs were obtained, and hsa-miR-194, hsa-miR-608, and hsa-miR-9 were further refined through RFS. A formula composed of the three miRNAs' expression values weighted by their multivariate Cox regression coefficients was constructed, and based on which, SCLC patients with longer OS could be well distinguished from those with shorter OS. CONCLUSIONS: This study should provide a valuable clue for SCLC prognosis evaluation.

15.
BMC Plant Biol ; 19(1): 168, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035920

RESUMEN

BACKGROUND: Identification of loci for grain yield (GY) and related traits, and dissection of the genetic architecture are important for yield improvement through marker-assisted selection (MAS). Two genome-wide association study (GWAS) methods were used on a diverse panel of 166 elite wheat varieties from the Yellow and Huai River Valleys Wheat Zone (YHRVWD) of China to detect stable loci and analyze relationships among GY and related traits. RESULTS: A total of 326,570 single nucleotide polymorphism (SNP) markers from the wheat 90 K and 660 K SNP arrays were chosen for GWAS of GY and related traits, generating a physical distance of 14,064.8 Mb. One hundred and twenty common loci were detected using SNP-GWAS and Haplotype-GWAS, among which two were potentially functional genes underpinning kernel weight and plant height (PH), eight were at similar locations to the quantitative trait loci (QTL) identified in recombinant inbred line (RIL) populations in a previous study, and 78 were potentially new. Twelve pleiotropic loci were detected on eight chromosomes; among these the interval 714.4-725.8 Mb on chromosome 3A was significantly associated with GY, kernel number per spike (KNS), kernel width (KW), spike dry weight (SDW), PH, uppermost internode length (UIL), and flag leaf length (FLL). GY shared five loci with thousand kernel weight (TKW) and PH, indicating significantly affected by two traits. Compared with the total number of loci for each trait in the diverse panel, the average number of alleles for increasing phenotypic values of GY, TKW, kernel length (KL), KW, and flag leaf width (FLW) were higher, whereas the numbers for PH, UIL and FLL were lower. There were significant additive effects for each trait when favorable alleles were combined. UIL and FLL can be directly used for selecting high-yielding varieties, whereas FLW can be used to select spike number per unit area (SN) and KNS. CONCLUSIONS: The loci and significant SNP markers identified in the present study can be used for pyramiding favorable alleles in developing high-yielding varieties. Our study proved that both GWAS methods and high-density genetic markers are reliable means of identifying loci for GY and related traits, and provided new insight to the genetic architecture of GY.


Asunto(s)
Genoma de Planta , Estudio de Asociación del Genoma Completo , Triticum/genética , Alelos , China , Marcadores Genéticos , Pleiotropía Genética , Variación Genética , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Desarrollo de la Planta/genética , Hojas de la Planta , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/anatomía & histología , Semillas/genética , Triticum/crecimiento & desarrollo
16.
Planta ; 250(1): 187-198, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30972483

RESUMEN

MAIN CONCLUSION: Totally, 23 and 26 loci for the first count germination ratio and the final germination ratio were detected by quantitative trait loci (QTL) mapping and association mapping, respectively, which could be used to facilitate wheat pre-harvest sprouting breeding. Weak dormancy can cause pre-harvest sprouting in seeds of common wheat which significantly reduces grain yield. In this study, both quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) were used to identify loci controlling seed dormancy. The analyses were based on a recombinant inbred line population derived from Zhou 8425B/Chinese Spring cross and 166 common wheat accessions. Inclusive composite interval mapping detected 8 QTL, while 45 loci were identified in the 166 wheat accessions by GWAS. Among these, four loci (Qbifcgr.cas-3AS/Qfcgr.cas-3AS, Qbifcgr.cas-6AL.1/Qfcgr.cas-6AL.1, Qbifcgr.cas-7BL.2/Qfcgr.cas-7BL.2, and Qbigr.cas-3DL/Qgr.cas-3DL) were detected in both QTL mapping and GWAS. In addition, 41 loci co-located with QTL reported previously, whereas 8 loci (Qfcgr.cas-5AL, Qfcgr.cas-6DS, Qfcgr.cas-7AS, Qgr.cas-3DS.1, Qgr.cas-3DS.2, Qbigr.cas-3DL/Qgr.cas-3DL, Qgr.cas-4B, and Qgr.cas-5A) were likely to be new. Linear regression showed the first count germination ratio or the final germination ratio reduced while multiple favorable alleles increased. It is suggested that QTL pyramiding was effective to reduce pre-harvest sprouting risk. This study could enrich the research on pre-harvest sprouting and provide valuable information of marker exploration for wheat breeding programs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Latencia en las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Mapeo Cromosómico , Germinación/genética , Fitomejoramiento , Semillas/genética , Semillas/fisiología , Triticum/fisiología
17.
Theor Appl Genet ; 132(9): 2509-2523, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31139853

RESUMEN

KEY MESSAGE: Genetic diversity, population structure, LD decay, and selective sweeps in 687 wheat accessions were analyzed, providing relevant guidelines to facilitate the use of the germplasm in wheat breeding. Common wheat (Triticum aestivum L.) is one of the most widely grown crops in the world. Landraces were subjected to strong human-mediated selection in developing high-yielding, good quality, and widely adapted cultivars. To investigate the genome-wide patterns of allelic variation, population structure and patterns of selective sweeps during modern wheat breeding, we tested 687 wheat accessions, including landraces (148) and cultivars (539) mainly from China and Pakistan in a wheat 90 K single nucleotide polymorphism array. Population structure analysis revealed that cultivars and landraces from China and Pakistan comprised three relatively independent genetic clusters. Cultivars displayed lower nucleotide diversity and a wider average LD decay across whole genome, indicating allelic erosion and a diversity bottleneck due to the modern breeding. Analysis of genetic differentiation between landraces and cultivars from China and Pakistan identified allelic variants subjected to selection during modern breeding. In total, 477 unique genome regions showed signatures of selection, where 109 were identified in both China and Pakistan germplasm. The majority of genomic regions were located in the B genome (225), followed by the A genome (175), and only 77 regions were located in the D genome. EigenGWAS was further used to identify key selection loci in modern wheat cultivars from China and Pakistan by comparing with global winter wheat and spring wheat diversity panels, respectively. A few known functional genes or loci found within these genome regions corresponded to known phenotypes for disease resistance, vernalization, quality, adaptability and yield-related traits. This study uncovered molecular footprints of modern wheat breeding and explained the genetic basis of polygenic adaptation in wheat. The results will be useful for understanding targets of modern wheat breeding, and in devising future breeding strategies to target beneficial alleles currently not pursued.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Selección Genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Productos Agrícolas/crecimiento & desarrollo , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Triticum/crecimiento & desarrollo
18.
Theor Appl Genet ; 131(5): 1063-1071, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29392374

RESUMEN

KEY MESSAGE: Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B. Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Ascomicetos , Mapeo Cromosómico , Genes de Plantas , Marcadores Genéticos , Genotipo , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Triticum/microbiología
19.
Theor Appl Genet ; 131(9): 1903-1924, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29858949

RESUMEN

KEY MESSAGE: We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay. Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai × Shi 4185 (D × S), Gaocheng 8901 × Zhoumai 16 (G × Z) and Linmai 2 × Zhong 892 (L × Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5-32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/genética , Marcadores Genéticos , Pleiotropía Genética , Fenotipo , Fitomejoramiento
20.
BMC Plant Biol ; 17(1): 220, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29169344

RESUMEN

BACKGROUND: Black point is a serious threat to wheat production and can be managed by host resistance. Marker-assisted selection (MAS) has the potential to accelerate genetic improvement of black point resistance in wheat breeding. We performed a genome-wide association study (GWAS) using the high-density wheat 90 K and 660 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of black point resistance and identify associated molecular markers. RESULTS: Black point reactions were evaluated in 166 elite wheat cultivars in five environments. Twenty-five unique loci were identified on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B and 7D (2), respectively, explaining phenotypic variation ranging from 7.9 to 18.0%. The highest number of loci was detected in the A genome (11), followed by the B (10) and D (4) genomes. Among these, 13 were identified in two or more environments. Seven loci coincided with known genes or quantitative trait locus (QTL), whereas the other 18 were potentially novel loci. Linear regression showed a clear dependence of black point scores on the number of favorable alleles, suggesting that QTL pyramiding will be an effective approach to increase resistance. In silico analysis of sequences of resistance-associated SNPs identified 6 genes possibly involved in oxidase, signal transduction and stress resistance as candidate genes involved in black point reaction. CONCLUSION: SNP markers significantly associated with black point resistance and accessions with a larger number of resistance alleles can be used to further enhance black point resistance in breeding. This study provides new insights into the genetic architecture of black point reaction.


Asunto(s)
Genoma de Planta , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA