Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(35): 24009-24017, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28832039

RESUMEN

A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.

2.
Sci Rep ; 7(1): 6772, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28755000

RESUMEN

In a short nanobearing system made from carbon nanotubes, the rotor with high rotational frequency may escape from the stator, which may cause a stability problem to the system of a nanodevice with such a nanobearing. In the present work, nanobearings with tri-walled nanotubes are investigated to reveal the conditions for the moving away of the free inner tube from the high-speed rotating middle tube. Experimental results show that the escape happens when the radii difference between the two rotors is larger than 0.34 nm and the rotational frequency of the middle tube is higher than a critical value. And before the escape occurs, the rotational frequency of the inner tube is lower than this critical value. Due to the radii difference being larger than 0.34 nm, the two rotors are non-coaxial, and the centrifugal force of the inner tube results in strong radial and axial interactions between the edges of the two rotors. When the relative sliding speed is relatively high, an edge of the inner rotor will pass through the potential barrier at the adjacent edge of the middle rotor, and further escape from the middle rotor occurs. The selection of a longer middle rotor with smaller radius can increase the critical rotational frequency of the middle rotor.

3.
Sci Rep ; 7(1): 12951, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021542

RESUMEN

A nanotube from single-layer black phosphorus (BP) has never been discovered in experiments. The present study proposed a method for the fabrication of a BP nanotube (BPNT) from a parallelogram nanoribbon self-assembled on a carbon nanotube (CNT). The nanoribbon has a pair of opposite sides along the third principal direction. According to the numerical simulation via molecular dynamics approach, we discover that a wider BP nanoribbon can form into a series of chiral nanotube by self-assembly upon CNTs with different radii. The radius of a BPNT from the same ribbon has a wide range, and depends on both geometry of the ribbon and the CNT. One can obtain a BPNT with the specified radius by placing the ribbon nearby a given CNT. The method provides a clue for potential fabrication of BPNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA