Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(2): 229-238, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168941

RESUMEN

A steady rise in fires in the Western United States, coincident with intensifying droughts, imparts substantial modifications to the underlying vegetation, hydrology and overall ecosystem. Drought can compound the ecosystem disturbance caused by fire, although how these compound effects on hydrologic and ecosystem recovery vary among ecosystems is poorly understood. Here we use remote sensing-derived high-resolution evapotranspiration (ET) estimates from before and after 1,514 fires to show that ecoregions dominated by grasslands and shrublands are more susceptible to drought, which amplifies fire-induced ET decline and, subsequently, shifts water flux partitioning. In contrast, severely burned forests recover from fire slowly or incompletely, but are less sensitive to dry extremes. We conclude that moisture limitation caused by droughts influences the dynamics of water balance recovery in post-fire years. This finding explains why moderate to extreme droughts aggravate impacts on the water balance in non-forested vegetation, while moisture accessed by deeper roots in forests helps meet evaporative demands unless severe burns disrupt internal tree structure and deplete fuel load availability. Our results highlight the dominant control of drought on altering the resilience of vegetation to fires, with critical implications for terrestrial ecosystem stability in the face of anthropogenic climate change in the West.


Asunto(s)
Ecosistema , Incendios , Estados Unidos , Sequías , Bosques , Agua
2.
Sci Rep ; 13(1): 3411, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854885

RESUMEN

Hydrologic extremes often involve a complex interplay of several processes. For example, flood events can have a cascade of impacts, such as saturated soils and suppressed vegetation growth. Accurate representation of such interconnected processes while accounting for associated triggering factors and subsequent impacts of flood events is difficult to achieve with conceptual hydrological models alone. In this study, we use the 2019 flood in the Northern Mississippi and Missouri Basins, which caused a series of hydrologic disturbances, as an example of such a flood event. This event began with above-average precipitation combined with anomalously high snowmelt in spring 2019. This series of anomalies resulted in above normal soil moisture that prevented crops from being planted over much of the corn belt region. In the present study, we demonstrate that incorporating remote sensing information within a hydrologic modeling system adds substantial value in representing the processes that lead to the 2019 flood event and the resulting agricultural disturbances. This remote sensing data infusion improves the accuracy of soil moisture and snowmelt estimates by up to 16% and 24%, respectively, and it also improves the representation of vegetation anomalies relative to the reference crop fraction anomalies.

3.
J Adv Model Earth Syst ; 14(11): e2022MS003040, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36582299

RESUMEN

Representation of irrigation in Earth System Models has advanced over the past decade, yet large uncertainties persist in the effective simulation of irrigation practices, particularly over locations where the on-ground practices and climate impacts are less reliably known. Here we investigate the utility of assimilating remotely sensed vegetation data for improving irrigation water use and associated fluxes within a land surface model. We show that assimilating optical sensor-based leaf area index estimates significantly improves the simulation of irrigation water use when compared to the USGS ground reports. For heavily irrigated areas, assimilation improves the evaporative fluxes and gross primary production (GPP) simulations, with the median correlation increasing by 0.1-1.1 and 0.3-0.6, respectively, as compared to the reference datasets. Further, bias improvements in the range of 14-35 mm mo-1 and 10-82 g m-2 mo-1 are obtained in evaporative fluxes and GPP as a result of incorporating vegetation constraints, respectively. These results demonstrate that the use of remotely sensed vegetation data is an effective, observation-informed, globally applicable approach for simulating irrigation and characterizing its impacts on water and carbon states.

4.
Nat Commun ; 13(1): 7825, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535940

RESUMEN

Groundwater provides nearly half of irrigation water supply, and it enables resilience during drought, but in many regions of the world, it remains poorly, if at all managed. In heavily agricultural regions like California's Central Valley, where groundwater management is being slowly implemented over a 27-year period that began in 2015, groundwater provides two-thirds or more of irrigation water during drought, which has led to falling water tables, drying wells, subsiding land, and its long-term disappearance. Here we use nearly two decades of observations from NASA's GRACE satellite missions and show that the rate of groundwater depletion in the Central Valley has been accelerating since 2003 (1.86 km3/yr, 1961-2021; 2.41 km3/yr, 2003-2021; 8.58 km3/yr, 2019-2021), a period of megadrought in southwestern North America. Results suggest the need for expedited implementation of groundwater management in the Central Valley to ensure its availability during the increasingly intense droughts of the future.


Asunto(s)
Agua Subterránea , Abastecimiento de Agua , Agricultura , Agua , California
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA