Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.949
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(14): 3762-3773.e10, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34133943

RESUMEN

Sneezing is a vital respiratory reflex frequently associated with allergic rhinitis and viral respiratory infections. However, its neural circuit remains largely unknown. A sneeze-evoking region was discovered in both cat and human brainstems, corresponding anatomically to the central recipient zone of nasal sensory neurons. Therefore, we hypothesized that a neuronal population postsynaptic to nasal sensory neurons mediates sneezing in this region. By screening major presynaptic neurotransmitters/neuropeptides released by nasal sensory neurons, we found that neuromedin B (NMB) peptide is essential for signaling sneezing. Ablation of NMB-sensitive postsynaptic neurons in the sneeze-evoking region or deficiency in NMB receptor abolished the sneezing reflex. Remarkably, NMB-sensitive neurons further project to the caudal ventral respiratory group (cVRG). Chemical activation of NMB-sensitive neurons elicits action potentials in cVRG neurons and leads to sneezing behavior. Our study delineates a peptidergic pathway mediating sneezing, providing molecular insights into the sneezing reflex arc.


Asunto(s)
Tronco Encefálico/fisiopatología , Neuropéptidos/metabolismo , Nariz/fisiopatología , Reflejo/fisiología , Estornudo/fisiología , Animales , Modelos Animales de Enfermedad , Hipersensibilidad/fisiopatología , Masculino , Ratones Endogámicos C57BL , Neuroquinina B/análogos & derivados , Neuroquinina B/metabolismo , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/metabolismo , Grabación en Video
2.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450207

RESUMEN

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Asunto(s)
Basófilos/patología , Neuronas/patología , Prurito/patología , Enfermedad Aguda , Alérgenos/inmunología , Animales , Enfermedad Crónica , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Histamina/metabolismo , Humanos , Inmunoglobulina E/inmunología , Inflamación/patología , Leucotrienos/metabolismo , Mastocitos/inmunología , Ratones Endogámicos C57BL , Fenotipo , Prurito/inmunología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
3.
Cell ; 171(1): 217-228.e13, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890086

RESUMEN

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.


Asunto(s)
Prurito/inmunología , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Enfermedades de la Piel/inmunología , Animales , Ganglios Espinales , Humanos , Interleucina-13/inmunología , Interleucina-4/inmunología , Janus Quinasa 1/metabolismo , Ratones , Ratones Endogámicos C57BL , Prurito/metabolismo , Enfermedades de la Piel/patología
4.
Nature ; 606(7913): 358-367, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477154

RESUMEN

The composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding the extent to which, and how, host genetics contributes to this variation is essential yet has proved to be difficult, as few associations have been replicated, particularly in humans2. Here we study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and the abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3 kb deletion in the gene encoding N-acetyl-galactosaminyl-transferase that underpins the ABO blood group in humans. We show that this deletion is a ≥3.5-million-year-old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut, and thereby reduces the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of the host genotype on the abundance of specific bacteria in the intestine combined with insights into the molecular mechanisms that underpin this association. Our data pave the way towards identifying the same effect in rural human populations.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Acetilgalactosamina , Microbioma Gastrointestinal , Genotipo , Porcinos , Sistema del Grupo Sanguíneo ABO/genética , Acetilgalactosamina/metabolismo , Animales , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Sitios de Carácter Cuantitativo , Porcinos/genética , Porcinos/microbiología
5.
Mol Cell ; 77(3): 633-644.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31836388

RESUMEN

Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.


Asunto(s)
Melanoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Wnt-5a/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma/genética , Melanoma/patología , Terapia Molecular Dirigida , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Microambiente Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/fisiología
6.
Blood ; 143(2): 152-165, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832030

RESUMEN

ABSTRACT: Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma associated with immunodeficiency, characterized by uncertain treatment approaches and an unfavorable prognosis. We conducted a multicenter, international, retrospective cohort study, aiming to characterize the clinical features, risk factors, and outcomes of patients with PBL. Data were collected from 22 institutions across 4 countries regarding patients diagnosed with PBL between 1 January 1999 and 31 December 2020. Survival risk factors were analyzed using both univariate and multivariate regression models. Overall survival (OS) was calculated using Kaplan-Meier statistics. First-line treatment regimens were stratified into standard- and higher-intensity regimens, and based on whether they incorporated a proteasome inhibitor (PI). A total of 281 patients (median age, 55 years) were included. Immunodeficiency of any kind was identified in 144 patients (51%), and 99 patients (35%) had HIV-positive results. The 5-year OS for the entire cohort was 36% (95% confidence interval, 30%-42%). In multivariate analysis, inferior OS was associated with Epstein-Barr virus-negative lymphoma, poor performance status, advanced stage, and bone marrow involvement. In an independent univariate analysis, the international prognostic index was associated with OS outcomes. Neither immunosuppression nor HIV infection, specifically, influenced OS. Among patients treated with curative intent (n = 234), the overall response rate was 72%. Neither the intensity of the treatment regimen nor the inclusion of PIs in first-line therapy was associated with OS. In this large retrospective study of patients with PBL, we identified novel risk factors for survival. PBL remains a challenging disease with poor long-term outcomes.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por VIH , Linfoma Plasmablástico , Humanos , Persona de Mediana Edad , Linfoma Plasmablástico/patología , Estudios Retrospectivos , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Pronóstico
7.
Proc Natl Acad Sci U S A ; 120(3): e2208927120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626550

RESUMEN

The process of oncogene-induced senescence (OIS) and the conversion between OIS and malignant transformation during carcinogenesis is poorly understood. Here, we show that following overactivation of oncogene Ras in lung epithelial cells, high-level transforming growth factor ß1 (TGF-ß1)-activated SMAD3, but not SMAD2 or SMAD4, plays a determinant role in inducing cellular senescence independent of the p53/p16/p15 senescence pathways. Importantly, SMAD3 binds a potential tumor suppressor ATOH8 to form a transcriptional complex that directly represses a series of cell cycle-promoting genes and consequently causes senescence in lung epithelial cells. Interestingly, the prosenescent SMAD3 converts to being oncogenic and essentially facilitates oncogenic Ras-driven malignant transformation. Furthermore, depleting Atoh8 rapidly accelerates oncogenic Ras-driven lung tumorigenesis, and lung cancers driven by mutant Ras and Atoh8 loss, but not by mutant Ras only, are sensitive to treatment of a specific SMAD3 inhibitor. Moreover, hypermethylation of the ATOH8 gene can be found in approximately 12% of clinical lung cancer cases. Together, our findings demonstrate not only epithelial cellular senescence directed by a potential tumor suppressor-controlled transcriptional program but also an important interplay between the prosenescent and transforming effects of TGF-ß/SMAD3, potentially laying a foundation for developing early detection and anticancer strategies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Transformación Celular Neoplásica , Genes ras , Proteína smad3 , Humanos , Transformación Celular Neoplásica/genética , Senescencia Celular/genética , Genes Supresores de Tumor , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(2): e2204134120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595669

RESUMEN

Many epithelial compartments undergo constitutive renewal in homeostasis but activate unique regenerative responses following injury. The clear corneal epithelium is crucial for vision and is renewed from limbal stem cells (LSCs). Using single-cell RNA sequencing, we profiled the mouse corneal epithelium in homeostasis, aging, diabetes, and dry eye disease (DED), where tear deficiency predisposes the cornea to recurrent injury. In homeostasis, we capture the transcriptional states that accomplish continuous tissue turnover. We leverage our dataset to identify candidate genes and gene networks that characterize key stages across homeostatic renewal, including markers for LSCs. In aging and diabetes, there were only mild changes with <15 dysregulated genes. The constitutive cell types that accomplish homeostatic renewal were conserved in DED but were associated with activation of cell states that comprise "adaptive regeneration." We provide global markers that distinguish cell types in homeostatic renewal vs. adaptive regeneration and markers that specifically define DED-elicited proliferating and differentiating cell types. We validate that expression of SPARC, a marker of adaptive regeneration, is also induced in corneal epithelial wound healing and accelerates wound closure in a corneal epithelial cell scratch assay. Finally, we propose a classification system for LSC markers based on their expression fidelity in homeostasis and disease. This transcriptional dissection uncovers the dramatically altered transcriptional landscape of the corneal epithelium in DED, providing a framework and atlas for future study of these ocular surface stem cells in health and disease.


Asunto(s)
Síndromes de Ojo Seco , Epitelio Corneal , Limbo de la Córnea , Ratones , Animales , Limbo de la Córnea/fisiología , Diferenciación Celular/fisiología , Córnea , Cicatrización de Heridas/genética , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Homeostasis/genética
9.
Hepatology ; 79(1): 61-78, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36683360

RESUMEN

BACKGROUND AND AIMS: Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS: RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating ß-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS: Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , Proteína con Dedos de Zinc GLI1/metabolismo , Proteínas de Unión al ARN/metabolismo , Mitofagia , Células Madre Neoplásicas/metabolismo
10.
Hum Genomics ; 18(1): 63, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867248

RESUMEN

BACKGROUND: The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3) are known to be involved in tumorigenesis, metastasis, prognosis, and cancer immunity in various human cancers, including non-small cell lung cancer (NSCLC). However, the literature on NSCLC largely omits the specific context of lung squamous cell carcinoma (LUSC), an oversight we aim to address. METHODS: Our study evaluated the differential expression of IGF2BP family members in tumors and normal tissues. Meta-analyses were conducted to assess the prognostic value of IGF2BPs in lung adenocarcinoma (LUAD) and LUSC. Additionally, correlations between IGF2BPs and tumor immune cell infiltration, mutation characteristics, chemotherapy sensitivity, and tumor mutation burden (TMB) were investigated. GSEA was utilized to delineate biological processes and pathways associated with IGF2BPs. RESULTS: IGF2BP2 and IGF2BP3 expression were found to be upregulated in LUSC patients. IGF2BP2 mRNA levels were correlated with cancer immunity in both LUSC and LUAD patients. A higher frequency of gene mutations was observed in different IGF2BP1/2/3 expression groups in LUAD compared to LUSC. Meta-analyses revealed a significant negative correlation between overall survival (OS) and IGF2BP2/3 expression in LUAD patients but not in LUSC patients. GSEA indicated a positive association between VEGF and IGF2BP family genes in LUAD, while matrix metallopeptidase activity was inversely correlated with IGF2BP family genes in LUSC. Several chemotherapy drugs showed significantly lower IC50 values in high IGF2BP expression groups in both LUAD and LUSC. CONCLUSION: Our findings indicated that IGF2BPs play different roles in LUAD and LUSC. This divergence highlights the need for tailored therapeutic strategies and prognostic tools, cognizant of the unique molecular profiles of LUAD and LUSC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Proteínas de Unión al ARN , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Pronóstico , Mutación/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología
11.
J Immunol ; 211(11): 1693-1700, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843506

RESUMEN

B lymphocytes engaged in humoral immunity play a critical role in combating pathogenic infections; however, the mechanisms of NK cells in regulating the responses of B cells remain largely unknown. In the present study, we established an Edwardsiella piscicida infection model in turbot (Scophthalmus maximus) and found that the production of IgM was decreased. Meanwhile, through establishing the head kidney-derived lymphocyte infection model, we revealed that the impairment of IgMhi B cells was associated with bacterial infection-induced perforin production. Interestingly, we reveal that perforin production in NK cells is tightly regulated by an inhibitory novel immune-type receptor, NITR12. Moreover, we confirm that inhibiting NITR12 can result in elevated perforin production, engaging the impairment of IgMhi B cells. Taken together, these findings demonstrate an innovative strategy of NK cells in mediating B lymphocyte killing in turbot and suggest that relieving NK cells through NITR12 might be the target for the development of efficacious vaccines.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Animales , Perforina , Células Asesinas Naturales , Linfocitos B , Muerte Celular
12.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976012

RESUMEN

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Asunto(s)
Acuaporina 4 , Astrocitos , Encefalomielitis Autoinmune Experimental , Ácidos Grasos Volátiles , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Transducción de Señal , Triptófano , Animales , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ratones , Triptófano/metabolismo , Triptófano/farmacología , Femenino , Transducción de Señal/efectos de los fármacos , Acuaporina 4/metabolismo , Acuaporina 4/genética , Microbioma Gastrointestinal/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
13.
J Am Chem Soc ; 146(12): 7950-7955, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483267

RESUMEN

Single-site catalysts (SSCs) achieve a high catalytic performance through atomically dispersed active sites. A challenge facing the development of SSCs is aggregation of active catalytic species. Reducing the loading of these sites to very low levels is a common strategy to mitigate aggregation and sintering; however, this limits the tools that can be used to characterize the SSCs. Here we report a sintering-resistant SSC with high loading that is achieved by incorporating Anderson-Evans polyoxometalate clusters (POMs, MMo6O24, M = Rh/Pt) within NU-1000, a Zr-based metal-organic framework (MOF). The dual confinement provided by isolating the active site within the POM, then isolating the POMs within the MOF, facilitates the formation of isolated noble metal sites with low coordination numbers via exsolution from the POM during activation. The high loading (up to 3.2 wt %) that can be achieved without sintering allowed the local structure transformation in the POM cluster and the surrounding MOF to be evaluated using in situ X-ray scattering with pair distribution function (PDF) analysis. Notably, the Rh/Pt···Mo distance in the active catalyst is shorter than the M···M bond lengths in the respective bulk metals. Models of the active cluster structure were identified based on the PDF data with complementary computation and X-ray absorption spectroscopy analysis.

14.
Mol Cancer ; 23(1): 11, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200551

RESUMEN

Dysregulation of R-loop homeostasis is closely related to various human diseases, including cancer. However, the causality of aberrant R-loops in tumor progression remains unclear. In this study, using single-cell RNA-sequencing datasets from lung adenocarcinoma (LUAD), we constructed an R-loop scoring model to characterize the R-loop state according to the identified R-loop regulators related to EGFR mutations, tissue origins, and TNM stage. We then evaluated the relationships of the R-loop score with the tumor microenvironment (TME) and treatment response. Furthermore, the potential roles of FANCI-mediated R-loops in LUAD were explored using a series of in vitro experiments. Results showed that malignant cells with low R-loop scores displayed glycolysis and epithelial-mesenchymal transition pathway activation and immune escape promotion, thereby hampering the antitumor therapeutic effects. Cell communication analysis suggested that low R-loop scores contributed to T cell exhaustion. We subsequently validated the prognostic value of R-loop scores by using bulk transcriptome datasets across 33 tumor types. The R-loop scoring model well predicted patients' therapeutic response to targeted therapy, chemotherapy, or immunotherapy in 32 independent cohorts. Remarkably, changes in R-loop distribution mediated by FANCI deficiency blocked the activity of Ras signaling pathway, suppressing tumor-cell proliferation and dissemination. In conclusion, this study reveals the underlying molecular mechanism of metabolic reprogramming and T cell exhaustion under R-loop score patterns, and the changes in R-loops mediated by R-loop regulators resulting in tumor progression. Therefore, incorporating anticancer methods based on R-loop or R-loop regulators into the treatment schemes of precision medicine may be beneficial.


Asunto(s)
Adenocarcinoma del Pulmón , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Estructuras R-Loop , Reprogramación Metabólica , Evasión Inmune , Adenocarcinoma del Pulmón/genética , Comunicación Celular , Análisis de la Célula Individual , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
15.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35043159

RESUMEN

Although drug combinations in cancer treatment appear to be a promising therapeutic strategy with respect to monotherapy, it is arduous to discover new synergistic drug combinations due to the combinatorial explosion. Deep learning technology holds immense promise for better prediction of in vitro synergistic drug combinations for certain cell lines. In methods applying such technology, omics data are widely adopted to construct cell line features. However, biological network data are rarely considered yet, which is worthy of in-depth study. In this study, we propose a novel deep learning method, termed PRODeepSyn, for predicting anticancer synergistic drug combinations. By leveraging the Graph Convolutional Network, PRODeepSyn integrates the protein-protein interaction (PPI) network with omics data to construct low-dimensional dense embeddings for cell lines. PRODeepSyn then builds a deep neural network with the Batch Normalization mechanism to predict synergy scores using the cell line embeddings and drug features. PRODeepSyn achieves the lowest root mean square error of 15.08 and the highest Pearson correlation coefficient of 0.75, outperforming two deep learning methods and four machine learning methods. On the classification task, PRODeepSyn achieves an area under the receiver operator characteristics curve of 0.90, an area under the precision-recall curve of 0.63 and a Cohen's Kappa of 0.53. In the ablation study, we find that using the multi-omics data and the integrated PPI network's information both can improve the prediction results. Additionally, the case study demonstrates the consistency between PRODeepSyn and previous studies.


Asunto(s)
Redes Neurales de la Computación , Mapas de Interacción de Proteínas , Línea Celular , Combinación de Medicamentos , Aprendizaje Automático
16.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261842

RESUMEN

MOTIVATION: Drug combination therapy shows significant advantages over monotherapy in cancer treatment. Since the combinational space is difficult to be traversed experimentally, identifying novel synergistic drug combinations based on computational methods has become a powerful tool for pre-screening. Among them, methods based on deep learning have far outperformed other methods. However, most deep learning-based methods are unstable and will give inconsistent predictions even by simply changing the input order of drugs. In addition, the insufficient experimental data of drug combination screening limits the generalization ability of existing models. These problems prevent the deep learning-based models from being in service. RESULTS: In this article, we propose CGMS to address the above problems. CGMS models a drug combination and a cell line as a heterogeneous complete graph, and generates the whole-graph embedding to characterize their interaction by leveraging the heterogeneous graph attention network. Based on the whole-graph embedding, CGMS can make a stable, order-independent prediction. To enhance the generalization ability of CGMS, we apply the multi-task learning technique to train the model on drug synergy prediction task and drug sensitivity prediction task simultaneously. We compare CGMS's generalization ability with six state-of-the-art methods on a public dataset, and CGMS significantly outperforms other methods in the leave-drug combination-out scenario, as well as in the leave-cell line-out and leave-drug-out scenarios. We further present the benefit of eliminating the order dependency and the discrimination power of whole-graph embeddings, interpret the rationality of the attention mechanism, and verify the contribution of multi-task learning. AVAILABILITY AND IMPLEMENTATION: The code of CGMS is available via https://github.com/TOJSSE-iData/CGMS.


Asunto(s)
Penicilinas , Combinación de Medicamentos , Línea Celular , Evaluación Preclínica de Medicamentos
17.
J Transl Med ; 22(1): 341, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594751

RESUMEN

BACKGROUND: Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS: Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS: This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS: Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Imiquimod/farmacología , Imiquimod/uso terapéutico , Muerte Celular Inmunogénica , Línea Celular Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia/métodos , Inmunidad , Microambiente Tumoral
18.
Blood ; 139(16): 2499-2511, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34995350

RESUMEN

Prophylactic high-dose methotrexate (HD-MTX) is often used for diffuse large B-cell lymphoma (DLBCL) patients at high risk of central nervous system (CNS) relapse, despite limited evidence demonstrating efficacy or the optimal delivery method. We conducted a retrospective, international analysis of 1384 patients receiving HD-MTX CNS prophylaxis either intercalated (i-HD-MTX) (n = 749) or at the end (n = 635) of R-CHOP/R-CHOP-like therapy (EOT). There were 78 CNS relapses (3-year rate 5.7%), with no difference between i-HD-MTX and EOT: 5.7% vs 5.8%, P = .98; 3-year difference: 0.04% (-2.0% to 3.1%). Conclusions were unchanged on adjusting for baseline prognostic factors or on 6-month landmark analysis (n = 1253). In patients with a high CNS international prognostic index (n = 600), the 3-year CNS relapse rate was 9.1%, with no difference between i-HD-MTX and EOT. On multivariable analysis, increasing age and renal/adrenal involvement were the only independent risk factors for CNS relapse. Concurrent intrathecal prophylaxis was not associated with a reduction in CNS relapse. R-CHOP delays of ≥7 days were significantly increased with i-HD-MTX vs EOT, with 308 of 1573 (19.6%) i-HD-MTX treatments resulting in a delay to subsequent R-CHOP (median 8 days). Increased risk of delay occurred in older patients when delivery was later than day 10 in the R-CHOP cycle. In summary, we found no evidence that EOT delivery increases CNS relapse risk vs i-HD-MTX. Findings in high-risk subgroups were unchanged. Rates of CNS relapse in this HD-MTX-treated cohort were similar to comparable cohorts receiving infrequent CNS prophylaxis. If HD-MTX is still considered for certain high-risk patients, delivery could be deferred until R-CHOP completion.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma de Células B Grandes Difuso , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/prevención & control , Ciclofosfamida , Doxorrubicina , Humanos , Linfoma de Células B Grandes Difuso/patología , Metotrexato , Recurrencia Local de Neoplasia/tratamiento farmacológico , Prednisona , Estudios Retrospectivos , Rituximab/uso terapéutico , Vincristina
19.
Cancer Cell Int ; 24(1): 176, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769521

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) represents one of the most significant causes of mortality due to cancer-related deaths. It has been previously reported that the TGF-ß signaling pathway may be associated with tumor progression. However, the relationship between TGF-ß signaling pathway and HCC remains to be further elucidated. The objective of our research was to investigate the impact of TGF-ß signaling pathway on HCC progression as well as the potential regulatory mechanism involved. METHODS: We conducted a series of bioinformatics analyses to screen and filter the most relevant hub genes associated with HCC. E. coli was utilized to express recombinant protein, and the Ni-NTA column was employed for purification of the target protein. Liquid liquid phase separation (LLPS) of protein in vitro, and fluorescent recovery after photobleaching (FRAP) were utilized to verify whether the target proteins had the ability to drive force LLPS. Western blot and quantitative real-time polymerase chain reaction (qPCR) were utilized to assess gene expression levels. Transcription factor binding sites of DNA were identified by chromatin immunoprecipitation (CHIP) qPCR. Flow cytometry was employed to examine cell apoptosis. Knockdown of target genes was achieved through shRNA. Cell Counting Kit-8 (CCK-8), colony formation assays, and nude mice tumor transplantation were utilized to test cell proliferation ability in vitro and in vivo. RESULTS: We found that Smad2/3/4 complex could regulate tyrosine aminotransferase (TAT) expression, and this regulation could relate to LLPS. CHIP qPCR results showed that the key targeted DNA binding site of Smad2/3/4 complex in TAT promoter region is -1032 to -1182. In addition. CCK-8, colony formation, and nude mice tumor transplantation assays showed that Smad2/3/4 complex could repress cell proliferation through TAT. Flow cytometry assay results showed that Smad2/3/4 complex could increase the apoptosis of hepatoma cells. Western blot results showed that Smad2/3/4 complex would active caspase-9 through TAT, which uncovered the mechanism of Smad2/3/4 complex inducing hepatoma cell apoptosis. CONCLUSION: This study proved that Smad2/3/4 complex could undergo LLPS to active TAT transcription, then active caspase-9 to induce hepatoma cell apoptosis in inhibiting HCC progress. The research further elucidate the relationship between TGF-ß signaling pathway and HCC, which contributes to discover the mechanism of HCC development.

20.
J Magn Reson Imaging ; 59(5): 1769-1776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37501392

RESUMEN

BACKGROUND: The status of the hypothalamic-pituitary-gonadal (HPG) axis is important for assessing the onset of physiological or pathological puberty. The reference standard gonadotropin-releasing hormone (GnRH) stimulation test requires hospital admission and repeated blood samples. A simple noninvasive method would be beneficial. OBJECTIVES: To explore a noninvasive method for evaluating HPG axis activation in children using an MRI radiomics model. STUDY TYPE: Retrospective. POPULATION: Two hundred thirty-nine children (83 male; 3.6-14.6 years) with hypophysial MRI and GnRH stimulation tests, randomly divided a training set (168 children) and a test set (71 children). FIELD STRENGTH/SEQUENCE: 3.0 T, 3D isotropic fast spin echo (CUBE) T1-weighted imaging (T1WI) sequences. ASSESSMENT: Radiomics features were extracted from sagittal 3D CUBE T1WI, and imaging signatures were generated using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. Diagnostic performance for differential diagnosis of HPG status was compared between a radiomics model and MRI features (adenohypophyseal height [aPH] and volume [aPV]). STATISTICAL TESTS: Receiver operating characteristic (ROC) and decision curve analysis (DCA). A P value <0.05 was considered statistically significant. RESULTS: Eight hundred fifty-one radiomics features were extracted and reduced to 10 by the LASSO method in the training cohort. The radiomics model based on CUBE T1WI showed good performance in assessment of HPG axis activation with an area under the ROC curve (AUC) of 0.81 (95% CI: 0.71, 0.91) in the test set. The AUC of the radiomics model was significantly higher than that of aPH (0.81 vs. 0.65) but there was no significant difference compared to aPV (0.81 vs. 0.78, P = 0.58). In DCA analysis, the radiomics signature showed higher net benefit over the aPV and aPH models. DATA CONCLUSIONS: The MRI radiomics model has potential to assess HPG axis activation status noninvasively, potentially providing valuable information in the diagnosis of patients with pathological puberty onset. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Eje Hipotálamico-Pituitario-Gonadal , Adenohipófisis , Niño , Humanos , Masculino , Estudios Retrospectivos , Radiómica , Imagen por Resonancia Magnética/métodos , Adenohipófisis/diagnóstico por imagen , Hormona Liberadora de Gonadotropina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA