Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Opt Lett ; 49(15): 4186-4189, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090890

RESUMEN

Traditional designs driven by symmetry-protected bound states in the continuum (SP-BICs) hardly support independent dual-band resonances, and they require extremely small perturbations to obtain an ultrahigh-Q. Here, we propose an SP-BIC-driven structure composed of a metasurface and a resonator, which supports independent dual-band resonances and enables ultrahigh-Q at large perturbations. The underlying mechanism enabling this is to form reasonable eigenfield distributions of two BICs by coating a dielectric layer on the metasurface. One eigenfield is confined within the metasurface and the bottom of the resonator, while the other one concentrates at the top of the resonator. Thus, two resonances with different originations can be supported, and the effect of metasurface perturbations on the eigenfields is weakened. This work provides a promising pathway for unlocking the potential of SP-BICs, enhancing light trapping and manipulation across diverse applications.

2.
Opt Lett ; 49(7): 1741-1744, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560851

RESUMEN

Speckle-correlation optical scattering imaging (SCOSI) has shown the potential for non-invasive biomedical diagnostic applications, which directly utilizes the scattering patterns to reconstruct the deep and non-line-of-sight objects. However, the course of the translation of this technique to preclinical biomedical imaging applications has been postponed by the following two facts: 1) the field of view of SCOSI was significantly limited by the optical memory effect, and 2) the molecular-tagged functional imaging of the biological tissues remains largely unexplored. In this work, a proof-of-concept design of the first-generation widefield functional SCOSI (WF-SCOSI) system was presented for simultaneously achieving mesoscopic mapping of fluid morphology and flow rate, which was realized by implementing the concepts of scanning synthesis and fluorescence scattering flowmetry. The ex vivo imaging results of the fluorescence-labeled large-scale blood vessel network phantom underneath the strong scatters demonstrated the effectiveness of WF-SCOSI toward non-invasive hemodynamic imaging applications.


Asunto(s)
Diagnóstico por Imagen , Hemodinámica , Fantasmas de Imagen , Reología , Diseño de Equipo , Imagen Óptica/métodos
3.
Opt Lett ; 49(7): 1725-1728, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560847

RESUMEN

Ultrasound coupling is one of the critical challenges for traditional photoacoustic (or optoacoustic) microscopy (PAM) techniques transferred to the clinical examination of chronic wounds and open tissues. A promising alternative potential solution for breaking the limitation of ultrasound coupling in PAM is photoacoustic remote sensing (PARS), which implements all-optical non-interferometric photoacoustic measurements. Functional imaging of PARS microscopy was demonstrated from the aspects of histopathology and oxygen metabolism, while its performance in hemodynamic quantification remains unexplored. In this Letter, we present an all-optical thermal-tagging flowmetry approach for PARS microscopy and demonstrate it with comprehensive mathematical modeling and ex vivo and in vivo experimental validations. Experimental results demonstrated that the detectable range of the blood flow rate was from 0 to 12 mm/s with a high accuracy (measurement error:±1.2%) at 10-kHz laser pulse repetition rate. The proposed all-optical thermal-tagging flowmetry offers an effective alternative approach for PARS microscopy realizing non-contact dye-free hemodynamic imaging.


Asunto(s)
Técnicas Fotoacústicas , Tecnología de Sensores Remotos , Técnicas Fotoacústicas/métodos , Reología/métodos , Ultrasonografía/métodos , Microscopía/métodos
4.
J Dairy Sci ; 107(5): 2850-2863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37977444

RESUMEN

The purpose of this study was to investigate the effects of early castration and eucalyptus oil (EUC) supplementation on dry matter intake (DMI), growth performance, and immune response of Holstein calves. Fifty-six male Holstein calves 52 d old and with an initial body weight (BW) of 63.5 ± 5.27 kg were used. The animals were blocked by BW and randomly assigned into 1 of the 4 treatment groups in a randomized complete block design with a 2 (no castration vs. castration) × 2 (without vs. with EUC) factorial arrangement of treatments. The treatments were (1) uncastrated calves fed without EUC, (2) uncastrated calves fed 0.5 g/d EUC (EUC group), (3) castrated calves (steers) fed without EUC (castrated group), and (4) steers fed with 0.5 g/d EUC (castrated + EUC). The experiment was 8 wk long, including pre- and postweaning (weaned at 72 d). The EUC × castrated interactions were not significant for DMI, growth performance, nutrient digestibility, and immune response. Castration did not affect the DMI, final BW, average daily gain (ADG), or feed efficiency, except that the ADG was greater for bull calves than for steers at postweaning. Supplementation with EUC increased DMI pre- and postweaning and increased the ADG of weaned calves. Digestibility in the total digestive tract was not affected by castration (except for organic matter digestibility), whereas adding EUC improved the digestibility of dry matter, acid detergent fiber, and crude protein. Blood concentration of IL-6 at d 94 was decreased by feeding EUC. These results indicate that the EUC could be fed to either intact or castrated dairy calves to promote growth and health postweaning; castration before weaning may reduce ADG and cause inflammatory stress without affecting feed intake or feed efficiency.

5.
Opt Express ; 31(19): 31587-31596, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710673

RESUMEN

Fano resonance is considered to be a promising approach for integrated sensing. However, achieving and controlling Fano resonance lineshapes on ultra-compact chips remains a challenge. In this article, we propose a theoretic model based on the transfer matrix method (TMM) to quantitatively interpret the impact of a micro-reflective unit (MRU) etched in the straight waveguide of a microring resonator (MRR). Numerical calculations and FDTD simulations indicate that the size and position of the MRU can be used to control the Fano resonance lineshape. Since the MRU is etched in the coupling region, the reflection caused by the MRU will significantly enhance the intensity of the counter-clockwise (CCW) mode in the microring. When applied to a single nanoparticle sensing, clockwise (CW) and CCW modes will couple due to a single nanoparticles or rough cavity walls, resulting in a sharp shift and split of the Fano lineshape. The proposed model for single nanoparticle sensing is described by the scattering matrix, and the calculations show a well matches with FDTD simulations. The results show that the model proposed in this paper provides a new theoretical basis for controlling Fano resonance lineshape and presents a new approach for the integrated sensing of silicon photonic devices with high sensitivity.

6.
J Acoust Soc Am ; 153(3): 1754, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37002108

RESUMEN

This paper proposes a subwavelength hierarchical honeycomb structure (SHHS) with a compact lateral dimension and double-band perfect absorption in low frequencies. Unlike the conventional micro-perforated panel (MPP)-honeycomb sandwich absorber, this structure has an additional internal honeycomb with a perforated wall. Therefore, there are two resonant cavities in the SHHS to realize multiple absorption peaks. Analytical, numerical, and experimental investigations are performed to study the proposed system's acoustic performance in absorption. The SSHS is simplified into four parts and its analytical model is constructed by combining various analytical models by acoustic-electro analogy. The analytical model is presented to explore the physical properties of sound absorption and the influence of parameters, which has been validated by comparisons with the numerical model, and the experimental data is measured by an impedance tube. It is found that the main incident energy is lost by the inside hole, which is different from the conventional absorbers with surface MPP. Moreover, the side length of the internal honeycomb can adjust the resonant frequencies to achieve an absorber with the subwavelength. A SSHS is designed with a perfect absorption at 320 Hz whose thickness is 1/31 of the resonant frequency wavelength. The SHHS has excellent potential for noise control engineering applications.

7.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446712

RESUMEN

The purpose of this study was to compare the antioxidant activity of litsea cubeba oil (LCO), cinnamon oil (CO), anise oil (AO), and eucalyptus oil (EUC) in vitro. The chemical compositions of the essential oils (EOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of the four EOs was evaluated through scavenging DPPH free radicals, chelating Fe2+, scavenging hydroxyl free radicals, and inhibiting yolk lipid peroxidation. The results showed that the major compounds found in LCO, CO, AO, and EUC are citral (64.29%), cinnamaldehyde (84.25%), anethole (78.51%), and 1,8-cineole (81.78%), respectively. The four EOs all had certain antioxidant activity. The ability to scavenge DPPH radical was ranked in the order of LCO > CO > AO > EUC. The hydroxyl radical scavenging ability was ranked in the order of EUC > CO > LCO > AO. The chelating Fe2+ capacity was ranked in the order of EUC > AO > CO > LCO. The yolk lipid peroxidation inhibition ability was ranked in the order of CO > AO > EUC > LCO. In different antioxidant activity assays, the antioxidant activity of the EOs was different. It was speculated that the total antioxidant activity of an EO may be the result of the joint action of different antioxidant capacities.


Asunto(s)
Apiaceae , Eucalyptus , Litsea , Aceites Volátiles , Pimpinella , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Eucalyptus/química , Litsea/química , Cinnamomum zeylanicum , Aceite de Eucalipto , Radicales Libres
8.
Opt Express ; 30(14): 24310-24323, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236988

RESUMEN

We present a compact optical encryption scheme by using a continuous-random-motion blurring model in an optical imaging system. Image encryption is performed by additive motion blur effects with continuous and random shifts of a camera. Real-time random phase modulation can be achieved without the use of random phase mask. Storage of the key is more convenient, which only requires parameters of motion. In addition, modulation characteristics are different from the traditional encryption schemes. On the premise of high security, modulation space is broadened, and flexibility of encryption is further improved. Simulations and experiments verify the validity of the motion blur-based crypto-system and demonstrate its security under several attacks. This novel method will be significant for the practical applications in the field of optical information security.

9.
Opt Lett ; 47(15): 3828-3831, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913325

RESUMEN

The reconfigurable higher-order topological states are realized in valley photonic crystals with enhanced optical Kerr nonlinearity. The inversion symmetry of the designed valley photonic crystal is broken due to the difference in optical responses between adjacent elements rather than their geometry structures. Therefore, by constructing photonic crystals with distinct topological phases, valley-dependent topological states can be realized, and their reconfigurability is demonstrated based on the Kerr effect. The investigated higher-order topological photonic crystals exhibit great robustness against the structural defects and inferior quality of pump introduced around the corner. Our work provides a new, to the best of our knowledge, platform for studying optical field manipulation and optical devices fabrication in the context of nonlinear higher-order topology.

10.
Opt Lett ; 47(11): 2786-2789, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648930

RESUMEN

Annular-illumination quantitative phase imaging based on space-domain Kramers-Kronig relations (AIKK) is a newly developed technique that is object-independent and non-iterative reconstructed inherently. Only capturing four low-resolution images, the AIKK system gains a resolution enhancement of nearly twofold. Under matching constraints between the illumination wave vector and pupil function aperture, we set a spectrum sampling criterion and establish a spectrum effective utilization model to search for the optimal solution of spectrum distribution for the specific annular structure. In view of the square spectrum structure, a diagonal-expanded sampling based AIKK method (DES-AIKK) is presented to get rid of the pixel aliasing problem. It is worth noting that the space-bandwidth-time product (SBP-T) further increases to 439.51 megapixels (1.8× of AIKK). Our work provides the guidelines and insights for designing the most suitable AIKK platform for high-throughput microscopic applications in pathology and real-time dynamic observation.


Asunto(s)
Diagnóstico por Imagen
11.
Opt Lett ; 47(15): 3752-3755, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913306

RESUMEN

Focusing objects accurately over short time scales is an essential and nontrivial task for a variety of microscopy applications. In this Letter, an autofocusing algorithm using pixel difference with the Tanimoto coefficient (PDTC) is described to predict the focus. Our method can robustly distinguish differences in clarity among datasets. The generated auto-focusing curves have extremely high sensitivity. A dataset of a defocused stack acquired by an Olympus microscope demonstrates the feasibility of our technique. This work can be applied in full-color microscopic imaging systems and is also valid for single-color imaging.


Asunto(s)
Algoritmos , Microscopía , Microscopía/métodos
12.
Opt Lett ; 47(14): 3423-3426, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838695

RESUMEN

For lensless diffraction imaging, it is a challenging dilemma to achieve a large field of view (FOV) and high resolution with a small amount of data at the same time. Ptychography can reconstruct the high-resolution image and illumination light simultaneously. But the illumination is limited to a small size by a probe in typical ptychography. For large samples, it takes much time to collect abundant patterns and has strict requirements for the computing power of computers. Another widely applied method, multi-height measurement, can realize a wide FOV with several holograms. But, the recovered image is easily destroyed by the background noise. In this Letter, a lensless diffraction imaging method by three-dimensional scanning is proposed. All positions of the object are different in three directions instead of scanning schemes only on a plane or along the optic axis, so more diversity of diffraction information is obtained. We apply the illumination without the limit of a confined aperture, which means that the imaging FOV of a pattern is equal to the size of the utilized image sensor. In comparison with the multi-height method, our method can separate the illumination background noise from the retrieved object. Consequently, the proposed method realized high resolution and contrast, large FOV, and the removal of background noise simultaneously. Experimental validations and comparisons with other methods are presented.

13.
J Opt Soc Am A Opt Image Sci Vis ; 39(10): 1766-1773, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215548

RESUMEN

We introduce a kind of radially polarized partially coherent (RPPC) beam with a prescribed non-uniform correlation function, called a radially polarized cosine non-uniformly correlated (RPCNUC) beam. Based on the extended Huygens-Fresnel principle, we study the propagation properties in free space and in a turbulent atmosphere. Unlike RPPC beams with uniform coherence, RPCNUC beams possess the invariance of dark hollow cores and radial polarization, and exhibit self-focusing properties. In a turbulent atmosphere, the intensity distribution demonstrates self-healing properties over a certain propagation distance. We also investigate how to adjust the beam parameters to reduce the turbulence-induced degradation in detail.

14.
Molecules ; 27(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36296637

RESUMEN

Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography-mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds' combined action.


Asunto(s)
Citrus , Aceites Volátiles , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Citrus/química , Antioxidantes/farmacología , Antioxidantes/química , Limoneno , Antibacterianos/farmacología , Antibacterianos/química , Terpenos/farmacología , Radicales Libres
15.
Opt Express ; 29(17): 26841-26850, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615111

RESUMEN

Topological corner state has attracted much research interests since it does not obey the conventional bulk-edge correspondence and enables tightly confined light within small volumes. In this work, we demonstrate an enhanced second harmonic generation (SHG) from a topological corner state and its directional emission. To this end, we design an all-dielectric topological photonic crystal based on optical quantum spin Hall effect. In this framework, pseudospin states of photons, topological phase, and topological corner state are subsequently constructed by engineering the structures. It is shown that a high Q-factor of 3.66×1011 can be obtained at the corner state, showing strong confinement of light at the corner. Consequently, SHG is significantly boosted and manifests directional out-of-plane emission. More importantly, the enhanced SHG has robustness against a broad class of defects. These demonstrated properties offer practical advantages for integrated optical circuits.

16.
Opt Express ; 29(21): 33097-33108, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809128

RESUMEN

Topological one-way surface states allow light to pass through sharp corners without reflection. In order to enhance the capability of surface routing devices, multiple one-way surface modes are usually required. Different from previously reported multiple surface modes achieved with large Chern number photonic media, we realize multiple surface waves on a continuous medium with small Chern number, i.e., |C| = 1. The new topological phase is found when the hyperbolic and double semi-ellipsoid-like cone bands are simultaneously gapped by vacuum state. We also find the degeneracy of multiple one-way surface waves in the double semi-ellipsoid-like metamaterials. The propagation direction of the waves is determined by their own ellipticities. Our results may help to construct surface state devices with multiplexing capability and higher coupling efficiency.

17.
Opt Express ; 29(24): 40428-40446, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809384

RESUMEN

We theoretically and systematically investigate Anderson localization of two bosons with nearest-neighbor interaction in one dimension under short- and long-time scales, two types of disorders, and three types of initial states, which can be directly observed in linear disordered photonic lattices via two experimentally measurable physical quantities, participation ratio and spatial correlation. We find that the behavior of localization characterized by the participation ratio depends on the strength of interaction and the type of disorder and initial condition. Two-boson spatial correlation reveals more novel and unique features. In the ordered case, two types of two-boson bindings and bosonic "fermionization" are shown, which are intimately attributed to the band structure of the system. In the disordered case, the impact of interaction on the two-boson Anderson localization is reexamined and the joint effect of disorder and interaction is addressed. We further demonstrate that the independence of the participation ratio or spatial correlation on the sign of interaction can be eliminated by employing an initial state that breaks one of two specific symmetries. Finally, we elucidate the relevant details of the experimental implementation in a two-dimensional linear photonic lattice.

18.
Opt Lett ; 46(20): 5284-5287, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34653173

RESUMEN

We proposed a nonconservative coupling scheme based on the add-drop filter configuration, in which a high Q factor passive microtoroid resonator is indirectly driven by an active unit, thus providing an additional coupling which might be comparable to a mode decay rate. Extraordinary scattering points are predicted when one of the supermodes becomes lossless. Specifically, when the inherent coupling strength is set at half of the mode's total decay rate, controllable transmission peaks can be realized by tuning the nonconservative coupling strength and phase delay. Our theoretic research might find potential application in tunable light steering based on non-Hermitian resonator systems.

19.
Opt Express ; 28(21): 31572-31583, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115127

RESUMEN

Aiming at achieving metamaterials (MTM)-based enhanced transmission through the sub-wavelength aperture on a metallic isolating plate in specific frequency band, the topology optimization method for MTM microstructure design was proposed. The MTM was inserted in the sub-wavelength aperture and perpendicular to the isolating plate. A piecewise preset function was employed to describe the expected enhanced and non-enhanced transmission frequency band. The transmission coefficient of the waveguide system with the designed MTM was mapped to a step mapping function. In the topology optimization of the MTM configuration, matching the mapping function to the preset function was chosen as the design objective. Three designs aiming at different specific enhanced transmission frequency band were carried out. The design satisfied the demand for the specific enhanced transmission frequency band, which was also validated by experiment.

20.
Opt Express ; 28(20): 28942-28953, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114802

RESUMEN

The dissipative squeezing mechanism is an effective method to generate the strong squeezing, which is important in the precision metrology. Here, we propose a practical method to achieve arbitrary bosonic squeezing via introducing frequency modulation into the coupled harmonic resonator model. We analyze the effect of frequency modulation and give the analytical and numerical squeezing results, respectively. To measure the accurate dynamic squeezing in our proposal, we give a more general defination of the relative squeezing degree. Finally, the proposed method is extended to generate the strong mechanical squeezing (>3 dB) in a practical optomechanical system consisting of a graphene mechanical oscillator coupled to a superconducting microwave cavity. The result indicates that the strong mechanical squeezing can be effectively achieved even when the mechanical oscillator is not initially in its ground state. The proposed method expands the study on nonclassical state and does not need the bichromatic microwave driving technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA