Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 194(6): 1062-1077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492733

RESUMEN

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a complex etiology. Recent evidence suggests that dopamine plays a crucial role in neural development. However, whether and how disrupted dopaminergic signaling during development contributes to ASD remains unknown. In this study, human brain RNA sequencing transcriptome analysis revealed a significant correlation between changes in dopaminergic signaling pathways and neural developmental signaling in ASD patients. In the zebrafish model, disrupted developmental dopaminergic signaling led to neural circuit abnormalities and behavior reminiscent of autism. Dopaminergic signaling may impact neuronal specification by potentially modulating integrins. These findings shed light on the mechanisms underlying the link between disrupted developmental dopamine signaling and ASD, and they point to the possibility of targeting dopaminergic signaling in early development for ASD treatment.


Asunto(s)
Trastorno del Espectro Autista , Dopamina , Fenotipo , Transducción de Señal , Pez Cebra , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Animales , Humanos , Dopamina/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Vías Nerviosas/metabolismo , Femenino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología
2.
Mol Pharm ; 21(4): 2043-2057, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471114

RESUMEN

The capillarization of hepatic sinusoids resulting from the activation of hepatic stellate cells poses a significant challenge, impeding the effective delivery of therapeutic agents to the Disse space for liver fibrosis treatment. Therefore, overcoming these barriers and achieving efficient drug delivery to activated hepatic stellate cells (aHSCs) are pressing challenge. In this study, we developed a synergistic sequential drug delivery approach utilizing neutrophil membrane hybrid liposome@atorvastatin/amlisentan (NCM@AtAm) and vitamin A-neutrophil membrane hybrid liposome @albumin (VNCM@Bai) nanoparticles (NPs) to breach the capillary barrier for targeted HSC cell delivery. Initially, NCM@AtAm NPs were successfully directed to the site of hepatic fibrosis through neutrophil-mediated inflammatory targeting, resulting in the normalization of liver sinusoidal endothelial cells (LSECs) and restoration of fenestrations under the combined influence of At and Am. Elevated tissue levels of the p-Akt protein and endothelial nitric oxide synthase (eNOS) indicated the normalization of LSECs following treatment with At and Am. Subsequently, VNCM@Bai NPs traversed the restored LSEC fenestrations to access the Disse space, facilitating the delivery of Bai into aHSCs under vitamin A guidance. Lastly, both in vitro and in vivo results demonstrated the efficacy of Bai in inhibiting HSC cell activation by modulating the PPAR γ/TGF-ß1 and STAT1/Smad7 signaling pathways, thereby effectively treating liver fibrosis. Overall, our designed synergistic sequential delivery system effectively overcomes the barrier imposed by LSECs, offering a promising therapeutic strategy for liver fibrosis treatment in clinical settings.


Asunto(s)
Células Endoteliales , Células Estrelladas Hepáticas , Humanos , Células Endoteliales/metabolismo , Biónica , Capilares/metabolismo , Liposomas/metabolismo , Neutrófilos/metabolismo , Vitamina A/metabolismo , Vitamina A/farmacología , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo
3.
Analyst ; 149(2): 490-496, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38062995

RESUMEN

Caspase-3 is an important biomarker for the process of apoptosis, which is a key target for cancer treatment. Due to its low concentration in single cells and the structural similarity of caspase family proteins, it is exceedingly challenging to accurately determine the intracellular caspase-3 during apoptosis in situ. Herein, a biosensing strategy based on the target-induced SERS "hot spot" formation has been developed for the simultaneous highly sensitive and selective detection of intracellular caspase-3 level. The nanosensor is composed of gold nanoparticles modified with the probe molecule 4-mercaptophenylboronic acid (4-MPBA) and a peptide chain. The well-designed peptide chain contains two distinct functional domains, one with a sulfhydryl group for bonding to the gold nanoparticles and the other a fragment specifically recognized by caspase-3. When caspase-3 is present, the negatively charged segment (NH2-Asp-Asp-Asp-Glu-Val-Asp-OH) of the peptide chain is specifically hydrolyzed, leaving a positively charged fragment coated on the surface of the gold nanoparticles. At this time, the golden nanoparticles undergo significant coupling aggregation due to the electrostatic interaction, resulting in a large number of SERS "hot spot" formation. The SERS signal of the 4-MPBA located at the nano-gap is significantly boosted because of the local plasma enhancement effect. The highly sensitive determination of caspase-3 can be achieved according to the altered SERS signal intensity of 4-MPBA. The turn-on of the SERS signal-induced target contributes to the excellent selectivity and the formation of the SERS "hot spot" effect that further improves the sensitivity of caspase-3 detection. The advantages of this biosensing technique allow for the precise in situ monitoring of the dynamic changes in caspase-3 levels during apoptosis. In addition, the differences in caspase-3 levels during the apoptosis of various cell types were compared. Monitoring the caspase-3 levels can be used to track the cellular apoptosis process, evaluate the effect of drugs on cancer cells in real time, and provide guidance for the selection of the appropriate drug dosage.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Caspasa 3 , Oro/química , Nanopartículas del Metal/química , Apoptosis , Técnicas Biosensibles/métodos , Péptidos , Espectrometría Raman/métodos
4.
J Nanobiotechnology ; 22(1): 365, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918839

RESUMEN

Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.


Asunto(s)
Bacteriófagos , Sistemas de Liberación de Medicamentos , Nanomedicina , Bacteriófagos/genética , Humanos , Nanomedicina/métodos , Sistemas de Liberación de Medicamentos/métodos , Animales , Técnicas de Transferencia de Gen , Portadores de Fármacos/química , Nanopartículas/química , Nanotecnología/métodos
5.
J Nanobiotechnology ; 22(1): 90, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439048

RESUMEN

Immune checkpoint inhibitor (ICI)-derived evolution offers a versatile means of developing novel immunotherapies that targets programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) axis. However, one major challenge is T cell exhaustion, which contributes to low response rates in "cold" tumors. Herein, we introduce a fluorinated assembly system of LFNPs/siTOX complexes consisting of fluorinated EGCG (FEGCG), fluorinated aminolauric acid (LA), and fluorinated polyethylene glycol (PEG) to efficiently deliver small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) for synergistic tumor cells and exhausted T cells regulation. Using a microfluidic approach, a library of LFNPs/siTOX complexes were prepared by altering the placement of the hydrophobe (LA), the surface PEGylation density, and the siTOX ratio. Among the different formulations tested, the lead formulation, LFNPs3-3/siTOX complexes, demonstrated enhanced siRNA complexation, sensitive drug release, improved stability and delivery efficacy, and acceptable biosafety. Upon administration by the intravenous injection, this formulation was able to evoke a robust immune response by inhibiting PD-L1 expression and mitigating T cell exhaustion. Overall, this study provides valuable insights into the fluorinated assembly and concomitant optimization of the EGCG-based delivery system. Furthermore, it offers a promising strategy for cancer immunotherapy, highlighting its potential in improving response rates in ''cold'' tumors.


Asunto(s)
Nanopartículas , Neoplasias , Linfocitos T , Antígeno B7-H1 , Ligandos , Microfluídica , Inmunoterapia , Neoplasias/tratamiento farmacológico
6.
Mikrochim Acta ; 191(2): 105, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240894

RESUMEN

Studies have found that matrix metalloproteinase-9 (MMP-9) plays a significant role in cancer cell invasion, metastasis, and tumor growth. But it is a challenge to go for highly sensitive and selective detection and targeting of MMP-9 due to the similar structure and function of the MMP proteins family. Herein, a novel surface-enhanced Raman scattering (SERS) sensing strategy was developed based on the aptamer-induced SERS "hot spot" formation for the extremely sensitive and selective determination of MMP-9. To develop the nanosensor, one group of gold nanospheres was modified with MMP-9 aptamer and its complementary strand DNA1, while DNA2 (complementary to DNA1) and the probe molecule 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were grafted on the surface of the other group of gold nanospheres. In the absence of MMP-9, DTNB located on the 13-nm gold nanospheres has only generated a very weak SERS signal. However, when MMP-9 is present, the aptamer preferentially binds to the MMP-9 to construct MMP-9-aptamer complex. The bare DNA1 can recognize and bind to DNA2, which causes them to move in close proximity and create a SERS hot spot effect. Due to this action, the SERS signal of DTNB located at the nanoparticle gap is greatly enhanced, achieving highly sensitive detection of MMP-9. Since the hot spot effect is caused by the aptamer that specifically recognizes MMP-9, the approach exhibits excellent selectivity for MMP-9 detection. Based on the benefits of both high sensitivity and excellent selectivity, this method was used to distinguish the difference in MMP-9 levels between normal and cancer cells as well as the expression of MMP-9 from cancer cells with different degrees of metastasis. In addition, this strategy can accurately reflect the dynamic changes in intracellular MMP-9 levels, stimulated by the MMP-9 activator and inhibitor. This strategy is expected to be transformed into a new technique for diagnosis of specific cancers related to MMP-9 and assessing the extent of cancer occurrence, development and metastasis.


Asunto(s)
Aptámeros de Nucleótidos , Metaloproteinasa 9 de la Matriz , Espectrometría Raman/métodos , Ácido Ditionitrobenzoico , Aptámeros de Nucleótidos/química , Oro/química
7.
Anal Bioanal Chem ; 415(25): 6145-6153, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37644323

RESUMEN

Ferroptosis is a non-apoptotic cell death regulated by iron-dependent lipid peroxidation. Glutathione (GSH), a key antioxidant against oxidative damage, is involved in one of the most important metabolic pathways of ferroptosis. Herein, an excellent plasmonic nanoprobe was developed for highly sensitive, in situ, dynamic real-time monitoring of intracellular GSH levels during ferroptosis. A nanoprobe was prepared by functionalizing gold nanoparticles (AuNPs) with the probe molecule crystal violet (CV). The fluctuation in the SERS signal intensity of CV via the competitive displacement reaction can be used to detect GSH. The advantages of the plasmonic nanoprobe including low-cost production techniques, outstanding stability and biocompatibility, high specificity and sensitivity towards GSH with a detection limit of 0.05 µM. It enables real-time dynamic monitoring of GSH levels in living cells during erastin-induced ferroptosis. This approach is expected to provide important theoretical support for elucidating the GSH-related ferroptosis metabolic mechanism and advancing our understanding of ferroptosis-based cancer therapy. Overview of the workflow of sensing principle for highly sensitive, in situ and dynamic tracking of intracellular GSH levels during drug-triggered ferroptosis process.


Asunto(s)
Ferroptosis , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Peroxidación de Lípido/fisiología , Glutatión/metabolismo
8.
J Nanobiotechnology ; 21(1): 299, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633923

RESUMEN

Metabolic reprogramming in cancer cells plays a crucial role in cancer development, metastasis and invasion. Cancer cells have a unique metabolism profile that could switch between glycolysis and oxidative phosphorylation (OXPHOS) in order to satisfy a higher proliferative rate and enable survival in tumor microenvironment. Although dietary-based cancer starvation therapy has shown some positive outcomes for cancer treatment, it is difficult for patients to persist for a long time due to the adverse effects. Here in this study, we developed a specific M1 macrophage-derived membrane-based drug delivery system for breast cancer treatment. Both metformin and 3-Bromopyruvate were loaded into the engineered cell membrane-based biomimetic carriers (Met-3BP-Lip@M1) for the shutdown of energy metabolism in cancer cells via simultaneous inhibition of both glycolysis and oxygen consumption. The in vitro studies showed that Met-3BP-Lip@M1 had excellent cancer cell uptake and enhanced cancer cell apoptosis via cell cycle arrest. Our results also demonstrated that this novel biomimetic nanomedicine-based cancer starvation therapy synergistically improved the therapeutic efficiency against breast cancer cells by blocking energy metabolic pathways, which resulted in a significant reduction of cancer cell proliferation, 3D tumor spheroid growth as well as in vivo tumor growth.


Asunto(s)
Biomimética , Neoplasias , Humanos , Metabolismo Energético , Glucólisis , Fosforilación Oxidativa , Membrana Celular , Neoplasias/tratamiento farmacológico
9.
J Nanobiotechnology ; 21(1): 420, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957632

RESUMEN

Immune therapy that targets PD-L1 (programmed cell death-ligand 1) is attractive to augment immune response by breaking the programmed cell death-1 (PD-1)/PD-L1 axis. However, T cell exhaustion associated with insufficient T cells infiltration may diminish the efficacy of cancer therapy. Here, we report a novel delivery system of FEGCG/FPEI@siTOX composed of fluorinated EGCG (FEGCG) and fluorinated polyethyleneimine (FPEI) for delivery of small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) to treat tumor and metastasis. In this way, the reduction in PD-L1 expression by FEGCG can promote T-cell function, while inhibition of TOX expression with siTOX can alleviate T-cell exhaustion. FPEI are designed to deliver siRNA with high efficiency and low toxicity compared to classical PEI. Integrating FEGCG, FPEI and siTOX into such a novel system resulted in excellent anti-tumor and antimetastatic effects. It is a promising delivery system and potential strategy for the treatment of "cold" tumors.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Linfocitos T/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias/tratamiento farmacológico , ARN Interferente Pequeño
10.
Mol Pharm ; 19(9): 3042-3056, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35876318

RESUMEN

Exosomes are a type of extracellular vesicles secreted by cells in normal or pathological conditions for cell-cell communication. With immunomodulatory characteristics and potential therapeutic properties, immune-cell-derived exosomes play an important role in cancer therapy. They express various antigens on their surface, which can be employed for antigen presentation, immunological activation, and metabolic regulation, leading to the killing of cancerous cells. In addition, immune-cell-derived exosomes have received extensive attention as a drug delivery platform in effective antitumor therapy due to their excellent biocompatibility, low immunogenicity, and high loading capacity. In this review, the biological and therapeutic characteristics of immune-cell-derived exosomes are comprehensively outlined. The antitumor mechanism of exosomes secreted by immune cells, including macrophages, dendritic cells, T cells, B cells, and natural killer cells, are systematically summarized. Moreover, the applications of immune-cell-derived exosomes as nanocarriers to transport antitumor agents (chemotherapeutic drugs, genes, proteins, etc.) are discussed. More importantly, the existing challenges of immune-cell-derived exosomes are pointed out, and their antitumor potentials are also discussed.


Asunto(s)
Exosomas , Neoplasias , Presentación de Antígeno , Sistemas de Liberación de Medicamentos , Exosomas/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
11.
Mol Pharm ; 19(7): 2390-2405, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35639669

RESUMEN

Reversing hypoxia-mediated multidrug resistance (MDR) presents a unique challenge in clinical chemotherapy. Here, a sequential dual delivery system composited with Cyclooxygenase-2 siRNA (siCOX-2) in poly-d-arginine (9R)/2-deoxyglucose (DG)-loaded gold nanostar (GNS) (siCOX-2@RDG) and paclitaxel (PTX)-loaded thermosensitive liposome (PTSL) was proposed to conquer the hypoxia-mediated MDR in tumors. As a result, the prepared siCOX-2@RDG exhibited a starlike morphology with a uniform particle size of 194.36 ± 1.44 nm and a ζ-potential of -11.83 ± 2.01 mV. In vitro, PTSL displayed expected thermal-responsive release properties. As expected, siCOX-2@RDG displayed exceptional DG-mediated hypoxia-targeting capability both in vitro and in vivo and downregulated the expression of COX-2 successfully. Meanwhile, GNS-triggered hyperthermia elevated the cellular uptake of PTSL in PTX-resistant HepG2(HepG2/PTX) cells in vitro and enhanced the permeability of tumor tissues, thus elevating the valid retention of PTX into solid tumors. Finally, we demonstrated that the sequential dual systems composed of siCOX-2@RDG and PTSL could reverse hypoxia-mediated MDR and exhibit excellent synergistic antitumor effects both in vitro and in vivo, prolonging the survival of tumor-bearing mice. The devised sequential dual systems, composed of two independent nanosystems, have a promising potential to overcome hypoxia-mediated MDR in clinical practice.


Asunto(s)
Oro , Liposomas , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Hipoxia/tratamiento farmacológico , Liposomas/farmacología , Células MCF-7 , Ratones , Paclitaxel/farmacología
12.
J Periodontal Res ; 57(2): 294-304, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34855211

RESUMEN

OBJECTIVE: To investigate the effect of Hfe gene mutation on the distribution of iron and periodontal bone loss in periodontal tissues. BACKGROUND DATA: It remains unclear how tissue iron loading affects the periodontium architectures in a genetic animal model of hereditary haemochromatosis (HH). METHODS: Male C57BL/6 Hfe -/- (8 weeks old) and wild-type (WT) mice were utilized to examine the iron distribution in periodontal tissues, as well as periodontal tissues changes using micro-computed tomography and histomorphometric analysis. Furthermore, tissue inflammatory mediators, bone markers and periodontal pathogens were carried out in PFA-fixed paraffin-embedded tissues using ELISA, RT-qPCR and genomic DNA qPCR, respectively. RESULTS: Excessive iron deposition was found in the periodontal ligament, gingiva and alveolar bone in Hfe -/- mice relative to their WT counterparts. This, in turn, was associated with significant periodontal bone loss, increased cemento-enamel junction-alveolar bone crest distance and decreased expression of molecules involved in bone development and turnover. Furthermore, the pro-inflammatory cytokine - interleukin 6 and periodontal bacteria - Campylobacter rectus were significantly increased in Hfe -/- mice compared with WT controls. CONCLUSION: Our results suggest that the iron loading in a mouse model of HH decreases alveolar bone formation and leads to alterations in the inflammatory state in the periodontium. Periodontal health should be assessed during the clinical assessment of HFE-HH patients.


Asunto(s)
Hemocromatosis , Animales , Modelos Animales de Enfermedad , Hemocromatosis/complicaciones , Hemocromatosis/genética , Hemocromatosis/metabolismo , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microtomografía por Rayos X
13.
Jpn J Clin Oncol ; 52(8): 930-943, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35578896

RESUMEN

BACKGROUND: Primary malignant melanoma of the ureter is extremely rare. Genetic variants to the increased risk of developing the disease have not yet been investigated. METHODS: Tumour mutation profiling for primary malignant melanoma of the ureter was performed by whole-exome sequencing. Immunohistochemistry was performed to verify histopathological features and the variants of predisposing genes and driver mutation genes. Furthermore, we conducted a literature review and Surveillance, Epidemiology and End Result-based study by searching public databases. RESULTS: We identified 38 somatic single nucleotide variants and 9 somatic insertions and deletions (INDELs) in tumour specimens. After filtering with the Cancer Gene Census database, seven predisposing genes and two driver mutation genes were identified. Moreover, the immunohistochemical profile showed that tumour cells were positive for Melan-A, melanoma gp100 human melanoma black 45 (HMB45), S100 beta and P53. The expression levels of two driver mutation genes (phosphatase and tensin homolog (PTEN) and desmoyokin (AHNAK) and five predisposing genes (AT-rich interaction domain 1B (ARID1B), catalase, eukaryotic translation initiation factor 4 gamma 3 (EIF4G3), ANK3 and collagen type I) were significantly downregulated in tumour tissues compared to paracancerous tissues. In the literature review and Surveillance, Epidemiology and End Results-based study, patients with primary malignant melanoma of the urinary tract had worse clinical outcomes than patients with primary urothelial carcinoma after 1:2 propensity score matching (P = 0.010). Additionally, Cox multivariate analysis for patients with primary malignant melanoma of the urinary tract indicated that distant metastasis (hazard ratio = 1.185; P = 0.044) was an independent predictor for overall survival, and tumour focality (hazard ratio = 0.602; P = 0.017) and non-surgery (hazard ratio = 0.434; P = 0.003) were independent factors for tumour progression. CONCLUSIONS: Our study is the first to provide evidence that the distinct phenotypes of primary malignant melanoma of the ureter may be due to different genetic variations. The prognosis of primary malignant melanoma of the urinary tract was poorer than that of primary urothelial carcinoma of the urinary tract.


Asunto(s)
Carcinoma de Células Transicionales , Melanoma , Proteínas de la Membrana , Proteínas de Neoplasias , Fosfohidrolasa PTEN , Neoplasias de la Vejiga Urinaria , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/patología , Genómica , Humanos , Melanoma/genética , Melanoma/patología , Proteínas de la Membrana/genética , Mutación , Proteínas de Neoplasias/genética , Fosfohidrolasa PTEN/genética , Uréter/cirugía , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
14.
J Nanobiotechnology ; 20(1): 407, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085212

RESUMEN

Macrophages are essential immune cells and play a major role in the immune response as pro-inflammatory or anti-inflammatory agents depending on their plasticity and functions. Infiltration and activation of macrophages are usually involved in wound healing. Herein, we first described macrophage polarization and their critical functions in wound healing process. It is addressed how macrophages collaborate with other immune cells in the wound microenvironment. Targeting macrophages by manipulating or re-educating macrophages in inflammation using nanomedicines is a novel and feasible strategy for wound management. We discussed the design and physicochemical properties of nanomaterials and their functions for macrophages activation and anti-inflammatory signaling during wound therapy. The mechanism of action of the strategies and appropriate examples are also summarized to highlight the pros and cons of those approaches. Finally, the potential of nanomedicines to modulate macrophage polarization for skin regeneration is discussed.


Asunto(s)
Nanomedicina , Cicatrización de Heridas , Recuento de Leucocitos , Macrófagos , Piel
15.
J Nanobiotechnology ; 20(1): 359, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918698

RESUMEN

The conversion of tumor-promoting M2 macrophage phenotype to tumor-suppressing M1 macrophages is a promising therapeutic approach for cancer treatment. However, the tumor normally provides an abundance of M2 macrophage stimuli, which creates an M2 macrophage-dominant immunosuppressive microenvironment. In our study, docetaxel (DTX) as chemotherapeutic modularity was loaded into M1 macrophage-derived exosomes (M1-Exo) with M1 proinflammatory nature to establish DTX-M1-Exo drug delivery system. We found that DTX-M1-Exo induced naïve M0 macrophages to polarize to M1 phenotype, while failed to repolarize to M2 macrophages upon Interleukin 4 restimulation due to impaired mitochondrial function. This suggests that DTX-M1-Exo can achieve long-term robust M1 activation in immunosuppressive tumor microenvironment. The in vivo results further confirmed that DTX-M1-Exo has a beneficial effect on macrophage infiltration and activation in the tumor tissues. Thus, DTX-M1-Exo is a novel macrophage polarization strategy via combined chemotherapy and immunotherapy to achieve great antitumor therapeutic efficacy.


Asunto(s)
Exosomas , Neoplasias , Docetaxel/farmacología , Exosomas/genética , Humanos , Inmunoterapia , Macrófagos , Neoplasias/patología , Microambiente Tumoral
16.
Ecotoxicol Environ Saf ; 242: 113896, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870347

RESUMEN

Nanoparticles are widely used in industry and personal care, and they inevitably end up in people's bodies and the environment. The widespread use of nanoparticles has raised new concerns about their neurotoxicity, as nanoparticles can enter the nervous system by blood-brain barrier. In neurotoxicity testing, the zebrafish provides powerful tools to overcome the limitations of other models. This paper will provide a comprehensive review of the power of zebrafish in neurotoxicity tests and the neurotoxic effects of nanoparticles, including inorganic, organic, and metal-based nanoparticles, on zebrafish from different perspectives. Such information can be used to predict not only the effects of nanoparticles on other species exposed to the aquatic environment but also the neurotoxicity of nanoparticles in humans.


Asunto(s)
Nanopartículas , Sistema Nervioso , Animales , Barrera Hematoencefálica , Humanos , Nanopartículas/toxicidad , Sistema Nervioso/efectos de los fármacos , Pez Cebra
17.
Nano Lett ; 21(15): 6471-6479, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34292757

RESUMEN

Modulation of tumor-associated macrophages (TAMs) holds promise for cancer treatment, mainly relying on M1 signaling activation and pro-inflammatory promotion. Nevertheless, the antitumor activity is often limited by the anti-inflammatory factors in the tumor microenvironment. Moreover, the metabolic function of TAMs is also critical to tumor progression. However, there are a few strategies that can simultaneously regulate both inflammatory and metabolic functions to achieve safe and potent antitumor activation of TAMs. Herein, we demonstrate that an iron-based metal organic framework nanoparticle and a ferroptosis-inducing agent synergistically induce mitochondrial alternation in TAMs, resulting in a radical metabolic switch from mitochondrial oxidative phosphorylation to glycolysis, which is resistant to anti-inflammatory stimuli challenge. The ferroptosis stress strengthened by the nanoformulation also drives multiple pro-inflammatory signaling pathways, enabling macrophage activation with potent tumoricidal activities. The ferroptosis-strengthened macrophage regulation strategy present in this study paves the way for TAM-centered antitumoral treatment to overcome the limitations of conventional methods.


Asunto(s)
Ferroptosis , Nanopartículas , Humanos , Macrófagos , Microambiente Tumoral , Macrófagos Asociados a Tumores
18.
Molecules ; 27(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35956911

RESUMEN

The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer's disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD's effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-ß-JAK-STAT pathways. We also illustrate the pharmacological action of CBD's derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.


Asunto(s)
Cannabidiol , Enfermedades del Sistema Nervioso , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Humanos , Microglía , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Neuroprotección
19.
Org Biomol Chem ; 19(11): 2512-2516, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33662088

RESUMEN

A direct and straightforward thiocyanation of enamides with NH4SCN under metal-free conditions has been accomplished. A variety of (E)-ß-thiocyanoenamides are readily produced in a regio- and stereo-selective manner. The protocol features mild reaction conditions, good functional group tolerance and operational simplicity. The potential utility of this strategy was further demonstrated by transformation of thiocyanate into thiotetrazole-containing compounds and a Pd-catalyzed cross-coupling reaction to afford six- or seven-membered sulfur-containing heterocycles. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.

20.
J Nanobiotechnology ; 19(1): 213, 2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34275480

RESUMEN

BACKGROUND: RBC membrane derived nanoparticles (NPs) represent an emerging platform with prolonged circulation capacity for the delivery of active substances. For functionalize derived RBCs NPs, various strategies, such as biomimetic rebuilding of RBCs, chemical modification or inserting ligands, have been carried out to improve their performance. However, one potential adverse effect for these methods is the structural failure of membrane proteins, consequently affecting its original immune escape function. RESULTS: In this study, we reported a green technology of "disassembly-reassembly" to prepare biomimetic reconstituted RBCs membrane (rRBCs) by separating the endogenous proteins and lipids from nature RBC membrane. IR780 iodide was used as a pattern drug to verify the property and feasibility of rRBCs by constructing IR780@rRBC NPs with IR780@RBC NPs and free IR780 as controls. The results demonstrated the superiority of IR780@rRBC NPs in toxicity, stability, pharmacokinetics and pharmacodynamics compared with IR780@rRBC and free IR780. CONCLUSIONS: The reported "disassembly-reassembly" strategy shows great potential to produce controllable and versatile rRBC membrane-inspired delivery platform, which may be used to overcome the deficiency of functionalization in cell membrane coated nanoparticles .


Asunto(s)
Biomimética/métodos , Membrana Eritrocítica/química , Terapia Fototérmica/métodos , Animales , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Eritrocitos , Indoles , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA