RESUMEN
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , ADN-Topoisomerasas de Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Animales , COVID-19/enzimología , COVID-19/patología , Chlorocebus aethiops , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/patología , Inflamación/virología , Mesocricetus , Ratones , Ratones Transgénicos , Células THP-1 , Células VeroRESUMEN
Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Virus ARN/inmunología , Animales , COVID-19 , Células Cultivadas , Quimiocinas/genética , Quimiocinas/inmunología , Infecciones por Coronavirus/genética , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Inflamación/virología , Interferones/genética , Interferones/inmunología , Pandemias , Neumonía Viral/genética , Virus ARN/clasificación , SARS-CoV-2 , Transcripción GenéticaRESUMEN
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.
Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Línea Celular , Inhibidores de Cisteína Proteinasa/análisis , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrazonas , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Morfolinas/análisis , Morfolinas/farmacología , Pandemias , Pirimidinas , Reproducibilidad de los Resultados , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Triazinas/análisis , Triazinas/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.
Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Hurones/virología , Humanos , Mesocricetus/virología , Ratones , Neumonía Viral/inmunología , Primates/virología , SARS-CoV-2 , Vacunas Virales/inmunologíaRESUMEN
The comorbidity of obesity and depression has major public health impacts, highlighting the need to understand their shared mechanisms. This study explored the connection between obesity and depression through the transient receptor potential V1 (TRPV1) signaling pathway, using obese/depressed murine models and clinical data. Mice fed a high-fat diet showed altered TRPV1 pathway expression in brain regions of the mice: downregulated in the medial prefrontal cortex (mPFC) and hippocampus, and upregulated in the hypothalamus and amygdala, influencing depression-like behaviors and inflammation. Treatments like eicosapentaenoic acid (EPA) and acupoint catgut embedding (ACE) reversed these effects, similar to observations in Trpv1-/- mice. Furthermore, chemogenetic activation in the ventral mPFC also alleviated depression via TRPV1. In our clinical validation, single nucleotide polymorphisms (SNPs) in TRPV1-related genes (PIK3C2A and PRKCA) were linked to interferon-induced depression. These findings underscore the potential of targeting TRPV1 as a therapeutic approach for obesity-related depression.
RESUMEN
Parkinson's disease (PD) is intricately linked to abnormal gut microbiota, yet the specific microbiota influencing clinical outcomes remain poorly understood. Our study identified a deficiency in the microbiota genus Blautia and a reduction in fecal short-chain fatty acid (SCFA) butyrate level in PD patients compared to healthy controls. The abundance of Blautia correlated with the clinical severity of PD. Supplementation with butyrate-producing bacterium B. producta demonstrated neuroprotective effects, attenuating neuroinflammation and dopaminergic neuronal death in mice, consequently ameliorating motor dysfunction. A pivotal inflammatory signaling pathway, the RAS-related pathway, modulated by butyrate, emerged as a key mechanism inhibiting microglial activation in PD. The change of RAS-NF-κB pathway in PD patients was observed. Furthermore, B. producta-derived butyrate demonstrated the inhibition of microglial activation in PD through regulation of the RAS-NF-κB pathway. These findings elucidate the causal relationship between specific gut microbiota and PD, presenting a novel microbiota-based treatment perspective for PD.
Asunto(s)
Clostridiales , Microbiota , Enfermedad de Parkinson , Humanos , Animales , Ratones , Microglía , Enfermedades Neuroinflamatorias , FN-kappa B , ButiratosRESUMEN
Omega-3 polyunsaturated fatty acids (PUFAs) may benefit migraine improvement, though prior studies are inconclusive. This study evaluated the effect of eicosapentaenoic acid (EPA) on episodic migraine (EM) prevention. Seventy individuals with EM participated in a 12-week randomized, double-blind, placebo-controlled trial from March 2020 and May 2022. They were randomly assigned to either the EPA (N = 35, 2 g fish oil with 1.8 g of EPA as a stand-alone treatment daily), or the placebo group (N = 35, 2 g soybean oil daily). Migraine frequency and headache severity were assessed using the monthly migraine days, visual analog scale (VAS), Migraine Disability Assessment (MIDAS), Hospital Anxiety and Depression Scale (HADS), Migraine-Specific Quality-of-Life Questionnaire (MSQ), and Pittsburgh Sleep Quality Index (PSQI) in comparison to baseline measurements. The EPA group significantly outperformed the placebo in reducing monthly migraine days (-4.4 ± 5.1 days vs. - 0.6 ± 3.5 days, p = 0.001), days using acute headache medication (-1.3 ± 3.0 days vs. 0.1 ± 2.3 days, p = 0.035), improving scores for headache severity (ΔVAS score: -1.3 ± 2.4 vs. 0.0 ± 2.2, p = 0.030), disability (ΔMIDAS score: -13.1 ± 16.2 vs. 2.6 ± 20.2, p = 0.001), anxiety and depression (ΔHADS score: -3.9 ± 9.4 vs. 1.1 ± 9.1, p = 0.025), and quality of life (ΔMSQ score: -11.4 ± 19.0 vs. 3.1 ± 24.6, p = 0.007). Notably, female particularly benefited from EPA, underscoring its potential in migraine management. In conclusion, high-dose EPA has significantly reduced migraine frequency and severity, improved psychological symptoms and quality of life in EM patients, and shown no major adverse events, suggesting its potential as a prophylactic for EM.
Asunto(s)
Ácido Eicosapentaenoico , Trastornos Migrañosos , Femenino , Humanos , Método Doble Ciego , Ácido Eicosapentaenoico/uso terapéutico , Cefalea , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/prevención & control , Calidad de Vida , Resultado del Tratamiento , MasculinoRESUMEN
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.
Asunto(s)
Anticuerpos Monoclonales , Anticuerpos ampliamente neutralizantes , COVID-19 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales , COVID-19/terapia , Dependovirus/genética , ARN Viral , SARS-CoV-2/genética , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos ampliamente neutralizantes/uso terapéuticoRESUMEN
Major depressive disorder (MDD), affecting over 264 million individuals globally, is associated with immune system dysregulation and chronic neuroinflammation, potentially linked to neurodegenerative processes. This review examines blood-brain barrier (BBB) dysfunction in MDD, focusing on key regulators like matrix metalloproteinase 9 (MMP9), aquaporin-4 (AQP4), and ATP-binding cassette subfamily B member 1 (ABCB1). We explore potential mechanisms by which compromised BBB integrity in MDD may contribute to neuroinflammation and discuss the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs). n-3 PUFAs have demonstrated anti-inflammatory and neuroprotective effects, and potential ability to modulate MMP9, AQP4, and ABCB1, thereby restoring BBB integrity in MDD. This review aims to elucidate these potential mechanisms and evaluate the evidence for n-3 PUFAs as a strategy to mitigate BBB dysfunction and neuroinflammation in MDD.
Asunto(s)
Barrera Hematoencefálica , Trastorno Depresivo Mayor , Ácidos Grasos Omega-3 , Enfermedades Neuroinflamatorias , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Neuroprotección , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológicoRESUMEN
BACKGROUND: For people with human immunodeficiency virus (PWH) who have no serological responses to their primary hepatitis A virus (HAV) vaccination or have seroreversion after successful primary vaccination, the optimal revaccination strategy remains unclear. METHODS: In this open-label, randomized clinical trial, PWH who tested negative for anti-HAV antibodies after receiving a standard 2-dose series of primary HAV vaccination were enrolled and assigned in a 1:1 ratio to receive either 1 dose (the 1-dose group) or 2 doses of HAV vaccine administered 4 weeks apart (the 2-dose group). Serological response rates and anti-HAV antibody titers were compared at weeks 24 and 48. RESULTS: Of the 153 participants (77 in the 1-dose group and 76 in the 2-dose group), the overall serological response rates at week 48 after revaccination were similar between the 2 groups (2- vs 1-dose, 80.2% vs 71.4%, P = .20). However, anti-HAV antibody titers were consistently higher in the 2-dose group than in the 1-dose group. In subgroup analysis, PWH who were nonresponders to primary HAV vaccination were significantly more likely to mount a serological response after 2-dose HAV revaccination (68.4% vs 44.1%, P = .038). No severe adverse events were reported throughout the study. CONCLUSIONS: Two-dose HAV revaccination administered 4 weeks apart yielded similar serological responses as 1-dose revaccination among PWH who were nonresponders or had seroreversion after primary HAV vaccination. The 2-dose revaccination schedule generated significantly higher anti-HAV antibody titers and was more likely to elicit serological responses at week 48 among PWH who were nonresponders to primary HAV vaccination. Clinical Trials Registration. NCT03855176.
Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Humanos , Inmunización Secundaria , VIH , Anticuerpos de Hepatitis A , Vacunación , Vacunas contra la Hepatitis A , Hepatitis A/prevención & controlRESUMEN
Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.
Asunto(s)
COVID-19 , Enfermedades Transmisibles Emergentes , Modelos Animales de Enfermedad , Células 3T3 , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/patología , COVID-19/fisiopatología , Chlorocebus aethiops , Dependovirus/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción Genética , Células VeroRESUMEN
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 µg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Asunto(s)
Ácidos Docosahexaenoicos , Inflamación , Animales , Humanos , Ratones , Antiinflamatorios , Enfermedad Crónica , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación/tratamiento farmacológico , MacrófagosRESUMEN
BACKGROUND: With initiation of antiretroviral therapy (ART) containing nucleos(t)ide reverse-transcriptase inhibitors (NRTIs) with anti-hepatitis B virus (HBV) activity, the evolution of HBV serologic markers among people living with human immunodeficiency virus (PLWH) who were born in the era of nationwide neonatal HBV vaccination is rarely investigated. METHODS: This retrospective cohort study evaluated the changes of HBV serologic markers (hepatitis B surface antigen [HBsAg], antibody to hepatitis B surface antigen [anti-HBs], and antibody to hepatitis B core antigen [anti-HBc]) of PLWH who had undergone neonatal HBV vaccination. Clinical characteristics were analyzed and the incidences of evolution of HBV serologic markers were estimated. RESULTS: Between 2004 and 2020, 608 PLWH (mean age, 24 years) were included and 62.0% initiated tenofovir-containing ART: 13 (2.1%) were HBsAg-positive, 312 (51.3%) tested triple-negative, 209 (34.4%) had vaccine-induced seroprotection against HBV, and 74 (12.2%) tested positive for anti-HBc with or without anti-HBs. Among 492 PLWH who received a median follow-up of 2.8 years, 4 cases of incident HBV infection occurred (0.59 per 100 person-years of follow-up [PYFU]) in PLWH testing triple-negative at baseline despite ART containing NRTIs with anti-HBV activity. Of PLWH with seroprotection against HBV at baseline, 38 subsequently lost anti-HBs (4.46 per 100 PYFU) and 4 cases of incident HBV infection occurred (0.47 per 100 PYFU). PLWH with an anti-HBs antibody titer ≥100 mIU/mL at baseline (adjusted hazard ratio [aHR], 0.10 [95% confidence interval {CI}: .02-.42]) and CD4 ≥500 cells/µL during follow-up (aHR, 0.51 [95% CI: .30-1.00]) were less likely to lose HBV seroprotection. CONCLUSIONS: Among young PLWH who had undergone neonatal HBV vaccination, evolution of HBV serologic markers and incident infections occurred despite ART containing NRTIs with anti-HBV activity.
Asunto(s)
Infecciones por VIH , Hepatitis B , Herpesvirus Cercopitecino 1 , Adolescente , Adulto , Antirretrovirales/uso terapéutico , ARN Polimerasas Dirigidas por ADN , VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Hepatitis B/tratamiento farmacológico , Hepatitis B/epidemiología , Hepatitis B/prevención & control , Anticuerpos contra la Hepatitis B , Antígenos del Núcleo de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Vacunas contra Hepatitis B , Virus de la Hepatitis B , Humanos , Recién Nacido , Estudios Retrospectivos , Tenofovir/uso terapéutico , Vacunación , Adulto JovenRESUMEN
BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Humanos , Ratones , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
BACKGROUNDS: Hepatitis B virus (HBV) biomarkers reflect the status of HBV infection; however, their role in patients with chronic hepatitis B and C (HBV/HCV) coinfection remains unknown. This study evaluated the characteristics of HBV biomarkers in patients with chronic HBV/HCV coinfection. METHODS: One hundred untreated HBV/HCV coinfected patients were enrolled. Active viral infection was defined as viral load above 2000 U/L and 15 U/L for HBV and HCV, respectively. Blood samples were analyzed for HBV biomarkers, including hepatitis B surface antigen (HBsAg), hepatitis B core-related antigen (HBcrAg), HBV DNA, and HBV pregenomic RNA (HBV pgRNA). The impact of HCV viremia was also studied. RESULTS: A total of 15 patients were HBV-inactive/HCV-inactive, 63 patients were HBV-inactive/HCV-active, 14 patients were HBV-active/HCV-inactive and 8 patients were HBV-active/HCV-active. A total of 71 (71%) patients were active HCV and 22 (22%) were active HBV. HBsAg, HBcrAg, and HBV DNA correlated with each other (P < 0.001). HBV pgRNA displayed no correlations with HBV DNA, HBsAg, or HBcrAg. Patients with HCV viremia had significantly lower HBV DNA, HBsAg, and HBcrAg levels as well as higher HBV pgRNA levels and lower HBV DNA:pgRNA ratio than those without viremia (HBV DNA, P < 0.001; HBsAg, P = 0.015; HBcrAg, P = 0.006; HBV pgRNA, P = 0.073; and HBV DNA:pgRNA ratio, P < 0.001). CONCLUSIONS: In patients coinfected with HBV and HCV, HBsAg, HBcrAg, and HBV DNA significantly correlated with each other. HBV and HCV coinfected patients with HCV viremia have lower HBV DNA, HBsAg, HBcrAg, and HBV DNA:pgRNA ratio as well as higher HBV pgRNA levels.
Asunto(s)
Coinfección , Hepatitis B Crónica , Hepatitis C , Biomarcadores , ADN Viral , Antígenos del Núcleo de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Antígenos e de la Hepatitis B , Virus de la Hepatitis B/genética , Hepatitis C/complicaciones , Humanos , ViremiaRESUMEN
BACKGROUND/PURPOSE: Limited data are available on the role of illicit non-injecting drug use in a prolonged HIV outbreak that predominantly affected men who have sex with men (MSM) in Taiwan since 2006. We aimed to assess associations between specific types of drug use and incident HIV infections in this outbreak. METHODS: We conducted a retrospective case-control study among MSM clients at voluntary counselling and testing (VCT) service at National Taiwan University Hospital (Taipei, Taiwan). We used BED IgG-capture enzyme immunoassay to identify incident HIV infection (cases), individually matched to HIV-negative MSM clients (controls) by HIV testing date. We used a structured questionnaire to obtain the information on illicit drug use and sexual risk behaviors. RESULTS: From a total of 15,305 MSM client visits during 2006-2015, 387 cases were matched to 1012 controls. Use of inhaled nitrites (adjusted odds ratio [aOR] 2.1), MDMA (aOR 2.9), amphetamines (aOR 1.6), and ketamine (aOR 1.5) were independently associated with incident HIV infection. Polydrug (≥2 drugs) use was associated with the highest risk (aOR 4.3; 95% CI 2.6-7.2). While the proportion of MSM VCT clients who reported use of any recreational drug remained stable during 2006-2015 (average: 9.7%, P: 0.38), there was a shift in specific types of drug use, from MDMA/ketamine to inhaled nitrites/amphetamine, after 2011 (all Ps < 0.05). CONCLUSION: Non-opioid recreational drugs use is associated with incident HIV infection in this prolonged HIV outbreak. There is an urgent need to formulate an effective public health response to mitigate the risk.
Asunto(s)
Infecciones por VIH , Minorías Sexuales y de Género , Estudios de Casos y Controles , Brotes de Enfermedades , Infecciones por VIH/epidemiología , Homosexualidad Masculina , Humanos , Masculino , Uso Recreativo de Drogas , Estudios Retrospectivos , Taiwán/epidemiologíaRESUMEN
Influenza A virus (IAV) is a human respiratory pathogen that causes yearly global epidemics, as well as sporadic pandemics due to human adaptation of pathogenic strains. Efficient replication of IAV in different species is, in part, dictated by its ability to exploit the genetic environment of the host cell. To investigate IAV tropism in human cells, we evaluated the replication of IAV strains in a diverse subset of epithelial cell lines. HeLa cells were refractory to the growth of human H1N1 and H3N2 viruses and low-pathogenic avian influenza (LPAI) viruses. Interestingly, a human isolate of the highly pathogenic avian influenza (HPAI) H5N1 virus successfully propagated in HeLa cells to levels comparable to those in a human lung cell line. Heterokaryon cells generated by fusion of HeLa and permissive cells supported H1N1 virus growth, suggesting the absence of a host factor(s) required for the replication of H1N1, but not H5N1, viruses in HeLa cells. The absence of this factor(s) was mapped to reduced nuclear import, replication, and translation, as well as deficient viral budding. Using reassortant H1N1:H5N1 viruses, we found that the combined introduction of nucleoprotein (NP) and hemagglutinin (HA) from an H5N1 virus was necessary and sufficient to enable H1N1 virus growth. Overall, this study suggests that the absence of one or more cellular factors in HeLa cells results in abortive replication of H1N1, H3N2, and LPAI viruses, which can be circumvented upon the introduction of H5N1 virus NP and HA. Further understanding of the molecular basis of this restriction will provide important insights into the virus-host interactions that underlie IAV pathogenesis and tropism.IMPORTANCE Many zoonotic avian influenza A viruses have successfully crossed the species barrier and caused mild to life-threatening disease in humans. While human-to-human transmission is limited, there is a risk that these zoonotic viruses may acquire adaptive mutations enabling them to propagate efficiently and cause devastating human pandemics. Therefore, it is important to identify viral determinants that provide these viruses with a replicative advantage in human cells. Here, we tested the growth of influenza A virus in a subset of human cell lines and found that abortive replication of H1N1 viruses in HeLa cells can be circumvented upon the introduction of H5N1 virus HA and NP. Overall, this work leverages the genetic diversity of multiple human cell lines to highlight viral determinants that could contribute to H5N1 virus pathogenesis and tropism.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Tropismo Viral/genética , Células A549 , Animales , Aves , Línea Celular , Perros , Células HEK293 , Células HeLa , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Gripe Aviar/genética , Gripe Aviar/metabolismo , Gripe Humana/genética , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Tropismo Viral/inmunología , Replicación Viral/genéticaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe and disproportionately affected New York City between March and May 2020. Here, we report on the first 100 COVID-19-positive autopsies performed at the Mount Sinai Hospital in New York City. Autopsies revealed large pulmonary emboli in six cases. Diffuse alveolar damage was present in over 90% of cases. We also report microthrombi in multiple organ systems including the brain, as well as hemophagocytosis. We additionally provide electron microscopic evidence of the presence of the virus in our samples. Laboratory results of our COVID-19 cohort disclose elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8, and TNFα. Our autopsy series of COVID-19-positive patients reveals that this disease, often conceptualized as a primarily respiratory viral illness, has widespread effects in the body including hypercoagulability, a hyperinflammatory state, and endothelial dysfunction. Targeting of these multisystemic pathways could lead to new treatment avenues as well as combination therapies against SARS-CoV-2 infection.
Asunto(s)
COVID-19/fisiopatología , Pulmón/fisiopatología , Embolia Pulmonar/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Coagulación Sanguínea , COVID-19/sangre , COVID-19/patología , COVID-19/virología , Causas de Muerte , Citocinas/sangre , Femenino , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/sangre , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Embolia Pulmonar/sangre , Embolia Pulmonar/patología , Embolia Pulmonar/virología , SARS-CoV-2/patogenicidadRESUMEN
The nephrotoxicity of sofosbuvir (SOF) on human immunodeficiency virus and hepatitis C virus (HIV/HCV)-coinfected patients receiving antiretroviral therapy (ART) remains controversial. We prospectively compared the estimated glomerular filtration rate (eGFR) changes in 167 patients receiving SOF-based direct-acting antivirals (DAAs) who also received tenofovir disoproxil fumarate (TFV)-based (n = 116) and TFV-free ART (n = 51). The eGFR was assessed by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, and the eGFR changes between ART regimens were compared by the generalized estimated equation. During DAA treatment, participants on TFV-based ART had a higher eGFR decline than those on TFV-free ART (slope coefficient difference: -0.82 ml/min/1.73 m2 /month [95% CI: -1.21 to -0.43]; p < 0.001), whereas the eGFR changes did not differ between groups (slope coefficient difference: 0.13 ml/min/1.73 m2 /month [95% CI: -0.32 to 0.58]; p = 0.42) after discontinuing DAAs. Participants on TFV TDF-based ART had a higher eGFR decline than those on TFV alafenamide fumarate (TAF)-based ART (slope coefficient difference: -0.31 ml/min/1.73 m2 /month [95% CI: -0.50 to -0.12]; p = 0.01). After discontinuing DAAs, the eGFR changes did not differ between groups (slope coefficient difference: 0.06 ml/min/1.73 m2 /month [95% CI: -0.98 to 1.10]; p = 0.91). In conclusion, HIV/HCV-coinfected patients on TFV-based ART had a slight eGFR decline compared to those on TFV-free ART during SOF-based DAA therapy. A similar trend between TDF-based and TAF-based ART was also observed. Because the differences of eGFR changes are limited, the physicians should not discourage the use of SOF-based DAAs in HIV-positive patients on TFV-based ART.