Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(5): 1243-1251.e12, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31080070

RESUMEN

The crystal structure of the ß2-adrenergic receptor (ß2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (ß2AR-Gsempty). Unfortunately, the ß2AR-Gsempty complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the existence of a transient complex between the ß2AR and GDP-bound Gs protein (ß2AR-GsGDP) that may represent an intermediate on the way to the formation of ß2AR-Gsempty and may contribute to coupling specificity. Here we present a structure of the ß2AR in complex with the carboxyl terminal 14 amino acids from Gαs along with the structure of the GDP-bound Gs heterotrimer. These structures provide evidence for an alternate interaction between the ß2AR and Gs that may represent an intermediate that contributes to Gs coupling specificity.


Asunto(s)
Adenilil Ciclasas/química , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Humanos , Relación Estructura-Actividad
2.
Nat Chem Biol ; 20(1): 74-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37580554

RESUMEN

G-protein-coupled receptors (GPCRs) are a class of integral membrane proteins that detect environmental cues and trigger cellular responses. Deciphering the functional states of GPCRs induced by various ligands has been one of the primary goals in the field. Here we developed an effective universal method for GPCR cryo-electron microscopy structure determination without the need to prepare GPCR-signaling protein complexes. Using this method, we successfully solved the structures of the ß2-adrenergic receptor (ß2AR) bound to antagonistic and agonistic ligands and the adhesion GPCR ADGRL3 in the apo state. For ß2AR, an intermediate state stabilized by the partial agonist was captured. For ADGRL3, the structure revealed that inactive ADGRL3 adopts a compact fold and that large unusual conformational changes on both the extracellular and intracellular sides are required for activation of adhesion GPCRs. We anticipate that this method will open a new avenue for understanding GPCR structure‒function relationships and drug development.


Asunto(s)
Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G , Modelos Moleculares , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Ligandos
3.
PLoS Biol ; 21(6): e3002131, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37279234

RESUMEN

Orcinol glucoside (OG), mainly found in the rhizome of the traditional Chinese herb Curculigo orchioides Gaertn, is noted for its antidepressant effects. In this study, an efficient screening pipeline was established for identifying the highly active orcinol synthase (ORS) and UDP-dependent glycosyltransferase (UGT) involved in the biosynthesis of OG by combining transcriptome analysis, structure-based virtual screening, and in vitro enzyme activity assays. By enhancing the downstream pathway, metabolic engineering and fermentation optimization, the OG production in Yarrowia lipolytica was improved 100-fold, resulting in a final yield of 43.46 g/L (0.84 g/g DCW), which is almost 6,400-fold higher than the extraction yield from C. orchioides roots. This study provides a reference for rapid identification of functional genes and high-yield production of natural products.


Asunto(s)
Glucósidos , Yarrowia , Glucósidos/metabolismo , Yarrowia/genética , Ingeniería Metabólica/métodos , Fermentación
4.
J Biol Chem ; : 107823, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341501

RESUMEN

UHRF1 (Ubiquitin-like with PHD and Ring Finger domains 1) is a crucial E3 ubiquitin ligase and epigenetic regulator with pivotal roles in various biological processes, including the maintenance of DNA methylation, regulation of gene expression, and facilitation of DNA damage repair. In this study, we unveil that UHRF1 interacts with the non-homologous end joining (NHEJ) factor XLF (also known as Cernunnos) following DNA double strand breaks (DSBs) in HeLa cells. Furthermore, we demonstrate that UHRF1 catalyzes lysine 63-linked polyubiquitination of XLF, rather than lysine 48-linked polyubiquitination. Notably, this polyubiquitination of XLF by UHRF1 does not affect its protein stability; instead, it enhances the recruitment of XLF to the sites of DNA damage. These findings shed light on the role of UHRF1 as a novel regulator of DNA repair through XLF in tumor cells.

5.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37503842

RESUMEN

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Asunto(s)
Reparación del ADN , Humanos , Línea Celular Tumoral , Daño del ADN , Histona Desacetilasa 6/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
J Cell Mol Med ; 28(6): e18115, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38436544

RESUMEN

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Asunto(s)
Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Proteínas Ribosómicas , Femenino , Humanos , Apoptosis/genética , Proliferación Celular/genética , Neoplasias Ováricas/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Factor de Unión a CCCTC/genética
7.
J Am Chem Soc ; 146(8): 5051-5055, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373353

RESUMEN

The construction of quaternary carbon centers via C-C coupling protocols remains challenging. The coupling of tertiary C(sp3) with secondary or tertiary C(sp3) counterparts has been hindered by pronounced steric clashes and many side reactions. Herein, we have successfully developed a type of bisphosphine ligand iron complex-catalyzed coupling reactions of tertiary alkyl halides with secondary alkyl zinc reagents and efficiently realized the coupling reaction between tertiary C(sp3) and secondary C(sp3) with high selectivity for the initial instance, which provided an efficient method for the construction of quaternary carbon centers with high steric hindrance. The combination of an iron catalyst and directing group of the substrate makes the great challenging transformation possible.

8.
Cancer Sci ; 115(8): 2515-2527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685894

RESUMEN

Multiple Endocrine Neoplasia 1 gene (MEN1), which is known to be a tumor suppressor gene in lung tissues, encodes a 610 amino acid protein menin. Previous research has proven that MEN1 deficiency promotes the malignant progression of lung cancer. However, the biological role of this gene in the immune microenvironment of lung cancer remains unclear. In this study, we found that programmed cell death-ligand 1 (PD-L1) is upregulated in lung-specific KrasG12D mutation-induced lung adenocarcinoma in mice, after Men1 deficiency. Simultaneously, CD8+ and CD3+ T cells are depleted, and their cytotoxic effects are suppressed. In vitro, PD-L1 is inhibited by the overexpression of menin. Mechanistically, we found that MEN1 inactivation promotes the deubiquitinating activity of COP9 signalosome subunit 5 (CSN5) and subsequently increases the level of PD-L1.


Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas , Escape del Tumor , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Escape del Tumor/genética , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Microambiente Tumoral/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Ubiquitinación , Mutación
9.
Anal Chem ; 96(32): 13299-13307, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39090799

RESUMEN

Exosomes have received considerable attention as potent reference markers for the diagnosis of various neoplasms due to their close and direct relationship with the proliferation, adhesion, and migration of tumor. The ultrasensitive detection of cancer-derived low-abundance exosomes is imperative, but still a great challenge. Herein, we report an electrochemiluminescence (ECL) biosensor based on the DNA-bio-bar-code and hybridization chain reaction (HCR)-mediated dual signal amplification for the ultrasensitive detection of cancer-derived exosomes. In this system, two types of aptamers were modified on the magnetic nanoprobe (MNPs) and gold nanoparticles (AuNPs) with numerous bio-bar-code DNA, respectively, which formed "sandwich" structures in the presence of specific target exosomes. The "sandwich" structures were separated under magnetic field, and the numerous bio-bar-code DNA were released by dissolving AuNPs. The released bio-bar-code DNA triggered the HCR procedure to produce a good deal of long DNA duplex structure for embedding in hemin, which generated strong ECL signal in the presence of coreactors for ultrasensitive detection of exosomes. Under the optimal conditions, it exhibited a good linearly of exosomes ranging from 10 to 104 exosomes particle µL-1 with limit of detection down to 5.01 exosome particle µL-1. Furthermore, the high ratio of ECL signal and minor change of ECL intensity indicated the good specificity, stability, and repeatability of this ECL biosensor. Given the good performance for exosome analysis, this ultrasensitive ECL biosensor has a promising application in the clinical diagnosis of early cancers.


Asunto(s)
Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Exosomas , Oro , Mediciones Luminiscentes , Nanopartículas del Metal , Hibridación de Ácido Nucleico , Técnicas Biosensibles/métodos , Exosomas/química , Humanos , Oro/química , ADN/química , Nanopartículas del Metal/química , Límite de Detección , Aptámeros de Nucleótidos/química
10.
Am J Pathol ; 193(12): 2111-2121, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741452

RESUMEN

Tumor mutation burden (TMB) is a potential biomarker for evaluating the prognosis and response to immune checkpoint inhibitors, but its costly and time-consuming method of measurement limits its widespread application. This study aimed to identify the TMB-related histopathologic features from hematoxylin and eosin slides and explore their prognostic value in gliomas. TMB-related features were detected using a graph convolutional neural network from whole-slide images of patients from The Cancer Genome Atlas data set (619 patients), and the correlation between features and TMB was evaluated in an external validation set (237 patients). TMB-related features were used for predicting overall survival (OS) of patients to investigate whether these features have potential for prognostic prediction. Moreover, biological pathways underlying the prognostic value of the features were further explored. Histopathologic features derived from whole-slide images were significantly associated with patient TMB (P = 0.007 in the external validation set). TMB-related features showed excellent performance for OS prediction, and patients with lower-grade gliomas could be further stratified into different risk groups according to the features (P = 0.00013; hazard ratio, 4.004). Pathways involved in the cell cycle and execution of immune response were enriched in patients with higher OS risk. The TMB-related features could be used to estimate TMB and aid in prognostic risk stratification of patients with glioma with dysregulated biological pathways.


Asunto(s)
Aprendizaje Profundo , Glioma , Humanos , Glioma/genética , Ciclo Celular , División Celular , Mutación , Biomarcadores de Tumor , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA