Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39157932

RESUMEN

Fluorescence imaging has revolutionized the visualization of cellular structures and biomolecules due to its non-invasive nature and high sensitivity. Chromenoquinoline (CQ)-based dyes offer promising optical properties, yet their widespread application is hindered by aggregation-caused quenching (ACQ). In contrast, J-aggregates, characterized by distinctive photophysical properties, present a solution to ACQ. Here, we introduce a novel platform employing chromenoquinoline-benzimidazole (CQ-BI) dyes, capable of forming J-aggregates, for dual-color cellular imaging. The incorporation of a methyl group into the benzimidazole moiety enhances J-aggregate formation, leading to robust emission in both dilute solutions and aggregated states. Our study demonstrates that methyl moiety-modified CQ-BI derivatives enable simultaneous imaging of mitochondria and lipid droplets in living cells. This work underscores the potential of CQ-BI dyes for dual-channel fluorescence imaging, leveraging the unique properties of J-aggregation.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124312, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688210

RESUMEN

The ubiquity of diverse material entities in environmental matrices renders the deployment of unifunctional fluorescent indicators inadequate. Consequently, this study introduces a ratiometric dual-emission fluorescent sensor (Probe CP), synthesized by conjugating phenothiazine coumarin to hydroxycoumarin through a piperazine linker for concurrent detection of HClO and H2S. Upon interaction with HClO, the phenothiazine unit's sulfur atom undergoes oxidation to sulfoxide, facilitating a shift from red to green fluorescence in a ratiometric manner. Concurrently, at the opposite terminus of Probe CP, 2,4-dinitroanisole serves as the reactive moiety for H2S recognition; it restores the blue emission characteristic of 7-hydroxycoumarin while maintaining the red fluorescence emanating from phenothiazine coumarin as an internal standard for ratio-based assessment. Exhibiting elevated specificity and sensitivity coupled with minimal detection thresholds (0.0506 µM for HClO and 1.7292 µM for H2S) alongside rapid equilibration periods (3 min for HClO and half an hour for H2S), this sensor was efficaciously employed in cellular environments and within zebrafish models as well as imaging applications pertaining to alcohol-induced hepatic injury in murine subjects.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Sulfuro de Hidrógeno , Fenotiazinas , Pez Cebra , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Fenotiazinas/química , Fenotiazinas/síntesis química , Cumarinas/química , Cumarinas/síntesis química , Sulfuro de Hidrógeno/análisis , Ratones , Espectrometría de Fluorescencia/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA