Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pineal Res ; 76(4): e12964, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803014

RESUMEN

Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of ß-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both ß-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. ß-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.


Asunto(s)
Ritmo Circadiano , Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/etiología , Ratones , Masculino , Ritmo Circadiano/fisiología , Melatonina/metabolismo , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Fotoperiodo , Riñón/metabolismo , Riñón/patología
2.
Int Immunopharmacol ; 125(Pt A): 111158, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925950

RESUMEN

Autoimmune hepatitis (AIH), characterized by immune-driven liver destruction and cytokine production, is a progressive inflammatory liver condition that may progress to hepatic cirrhosis or tumors. However, the underlying mechanism is not well understood, and the treatment options for this disease are limited. Pemetrexed (PEM), a clinically used anti-folate drug for treating various tumors, was found to inhibit the nuclear factor (NF)-κB signaling pathways that exert an important role in the development of AIH. Here, we investigated the impact of PEM on immune-mediated hepatic injuries using a murine model of Concanavalin A (Con A)-induced hepatitis, a well-established model for AIH. Mice received intraperitoneal PEM injections 3 times at 12-hour intervals, and two hours later, they were challenged with Con A. Liver samples and serum were collected after 10 h. The results indicate that PEM significantly improved mouse survival rates and lowered serum transaminase levels. Moreover, PEM effectively alleviated oxidative stress, reduced histopathological liver damage, and mitigated hepatocyte apoptosis. Notably, it reduced the activation of M1-type macrophages in the liver. The expression of proinflammatory cytokines and genes associated with M1 macrophages, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-12, IL-1ß, and inducible nitric oxide synthase (iNOS), was also decreased. Finally, the results indicated that PEM regulates M1 macrophage activation by modulating the NF-κB signaling pathways. Overall, these results demonstrate that PEM effectively guards against immune-mediated hepatic injuries induced by Con A by inhibiting M1 macrophage activation through the NF-κB signaling pathways and indicate the potential of PEM as a practical treatment option for AIH in clinical settings.


Asunto(s)
Hepatitis Autoinmune , Neoplasias , Animales , Ratones , FN-kappa B/metabolismo , Concanavalina A , Pemetrexed , Activación de Macrófagos , Citocinas/metabolismo , Interleucina-6
3.
Inflammation ; 46(3): 1118-1130, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095260

RESUMEN

Growing evidence demonstrates that cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, is essential for activating innate immunity and regulating inflammatory response against cellular damage. However, its role in immune-mediated hepatitis remains unclear. Here by challenging the cGAS knockout (KO) and their littermate wide-type (WT) mice with intravenous ConA injection to induce acute immune-mediated liver injury, we found that lack of cGAS drastically aggravated liver damage post ConA treatment for 24 h, reflected by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and amplified hepatic necrosis. The number of apoptotic hepatocytes was also significantly increased in the KO mice. RNA-sequencing analysis revealed that leukocyte chemotaxis and migration-related genes were remarkably upregulated in the KO livers. Consistently, immunofluorescence assays illustrated that the infiltrating F4/80-positive macrophages, Ly6G-positive neutrophils, and CD3-positive T cells were all significantly increased in the KO liver sections. The hepatic expression of the pro-inflammatory genes was elevated as well. Supporting the in vivo findings, the knockdown of cGAS in cultured macrophages showed promoted migration potential and enhanced pro-inflammatory gene expression. These results collectively demonstrated that deletion of cGAS could aggravate ConA-induced acute liver injury, at least at the 24-h time point, and its mechanism might be related to facilitating leukocyte chemotaxis and promoting liver inflammatory response.


Asunto(s)
Hígado , Nucleotidiltransferasas , Ratones , Animales , Concanavalina A/toxicidad , Concanavalina A/metabolismo , Hígado/metabolismo , Nucleotidiltransferasas/metabolismo , Ratones Noqueados , Quimiotaxis de Leucocito , Ratones Endogámicos C57BL
4.
JHEP Rep ; 5(11): 100856, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37791375

RESUMEN

Background & Aims: Circadian rhythms play significant roles in immune responses, and many inflammatory processes in liver diseases are associated with malfunctioning molecular clocks. However, the significance of the circadian clock in autoimmune hepatitis (AIH), which is characterised by immune-mediated hepatocyte destruction and extensive inflammatory cytokine production, remains unclear. Methods: We tested the difference in susceptibility to the immune-mediated liver injury induced by concanavalin A (ConA) at various time points throughout a day in mice and analysed the effects of global, hepatocyte, or myeloid cell deletion of the core clock gene, Bmal1 (basic helix-loop-helix ARNT-like 1), on liver injury and inflammatory responses. Multiple molecular biology techniques and mice with macrophage-specific knockdown of Junb, a Bmal1 target gene, were used to investigate the involvement of Junb in the circadian control of ConA-induced hepatitis. Results: The susceptibility to ConA-induced liver injury is highly dependent on the timing of ConA injection. The treatment at Zeitgeber time 0 (lights on) triggers the highest mortality as well as the severest liver injury and inflammatory responses. Further study revealed that this timing effect was driven by macrophage, but not hepatocyte, Bmal1. Mechanistically, Bmal1 controls the diurnal variation of ConA-induced hepatitis by directly regulating the circadian transcription of Junb and promoting M1 macrophage activation. Inhibition of Junb in macrophages blunts the administration time-dependent effect of ConA and attenuates liver injury. Moreover, we demonstrated that Junb promotes macrophage inflammation by regulating AKT and extracellular signal-regulated kinase (ERK) signalling pathways. Conclusions: Our findings uncover a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced hepatitis and provide new insights into the prevention and treatment of AIH. Impact and Implications: This study unveils a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced liver injury, providing new insights into the prevention and treatment of immune-mediated hepatitis, including autoimmune hepatitis (AIH). The findings have scientific implications as they enhance our understanding of the circadian regulation of immune responses in liver diseases. Furthermore, clinically, this research offers opportunities for optimising treatment strategies in immune-mediated hepatitis by considering the timing of therapeutic interventions.

5.
Nutrients ; 14(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893879

RESUMEN

Nowadays, more and more people are suffering from circadian disruption. However, there is no well-accepted treatment. Recently, time-restricted feeding (TRF) was proposed as a potential non-drug intervention to alleviate jet lag in mice, especially in mice treated with a 6-h advanced phase shift. Here, we challenged C57BL/6 mice with a 6-h delay phase shift or a 12-h shift (day-night reversal) combined with 6- or 12-h TRF within the dark phase and found the beneficial effects of given TRF strategies in certain phase-shifting situations. Although behavioral fitness did not correlate well with health status, none of the TRF strategies we used deteriorated lipopolysaccharide-induced sepsis. These findings improve our understanding of the benefits of TRF for adaptation to circadian disruption.


Asunto(s)
Ritmo Circadiano , Síndrome Jet Lag , Adaptación Fisiológica , Animales , Ayuno , Humanos , Ratones , Ratones Endogámicos C57BL
6.
Biomed Pharmacother ; 141: 111909, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34328088

RESUMEN

Ganoderma lucidum is a legendary traditional Chinese medicine with various bioactivities. This study was conducted (a) to explore the in vitro fermentation of the water extracts of G. lucidum fruiting body with Lactobacillus acidophilus and Bifidobacterium breve and (b) to investigate the effect of fermentation broth (GLFB) on dexamethasone (DEX)-induced immunosuppressed mice. Our results demonstrated that probiotic fermentation of G. lucidum fruiting body extracts underwent structural changing of major ganoderic acid components, such as ganoderic acid A (GA) into GC2, and this fermentation process involves changing of several metabolic pathways in the probiotic strains. GLFB could significantly improve the immunity, intestinal integrity, and gut microbiota dysbiosis in DEX-treated mice, and the immunostimulatory activity of GLFB was found closely related to its direct regulation on the expansion of CD4+ T cells in Peyer's patches of mice. These data implied that probiotic fermentation of G. lucidum fruiting body extracts promoted its immunostimulatory activity via biotransformation of components such as GA. This research provides a theoretical support for the development and application of G. lucidum fermentation by probiotics.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Dexametasona/farmacología , Cuerpos Fructíferos de los Hongos/química , Inmunosupresores/farmacología , Probióticos/metabolismo , Reishi/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Fermentación , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Intestinos/efectos de los fármacos , Lanosterol/análogos & derivados , Lanosterol/farmacología , Recuento de Linfocitos , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos BALB C , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/efectos de los fármacos , Reishi/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA