Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Org Biomol Chem ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087323

RESUMEN

A BF3·OEt2-mediated transamidation between unactivated amides and amines is reported, enabling access to diverse secondary and tertiary amides under transition-metal-free and solvent-free conditions. The operationally simple procedure provides a novel manifold for converting amide-amide bonds with excellent chemoselectivity. In particular, a series of amides including challenging thioamides enable direct transamidation to products with modest to excellent yields. Meanwhile, additional experiments were conducted to elucidate the mechanism of this transformation, and a plausible mechanism was proposed based on the results and related literature.

2.
Opt Express ; 31(3): 4862-4872, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785443

RESUMEN

InAs/GaAs quantum dot (QD) laser monolithically grown on silicon is one of the potential approaches to realizing silicon-based light sources. However, the mismatch between GaAs and Si generates a high density of threading dislocations (TDs) and antiphase boundaries (APBs), which trap carriers and adversely affect device performance. In this paper, we present a simple method to reduce the threading dislocation density (TDD) merely through GaAs buffer, eliminating the intricate dislocation filter layers (DFLs) as well as any intermediate buffer layers whose compositions are different from the target GaAs. An APB-free epitaxial 2.5 µm GaAs film was grown on exact Si (001) by metalorganic chemical vapor deposition (MOCVD) with a TDD of 9.4 × 106 cm-2. InAs/GaAs QDs with a density of 5.2 × 1010 cm-2 were grown on this GaAs/Si (001) virtual substrate by molecular beam epitaxy (MBE) system. The fabricated QD laser has achieved a single facet room temperature continuous-wave output power of 138 mW with a threshold current density of 397 A/cm2 and a lasing wavelength of 1306 nm. In this work, we propose a simplified method to fabricate high-power QD lasers, which is expected to promote the application of photonic integrated circuits.

3.
Opt Express ; 31(5): 7900-7906, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859911

RESUMEN

InGaAs/AlGaAs multiple quantum well lasers grown on silicon (001) by molecular beam epitaxy have been demonstrated. By inserting InAlAs trapping layers into AlGaAs cladding layers, misfit dislocations easily located in the active region can be effectively transferred out of the active region. For comparison, the same laser structure without the InAlAs trapping layers was also grown. All these as-grown materials were fabricated into Fabry-Perot lasers with the same cavity size of 20 × 1000 µm2. The laser with trapping layers achieved a 2.7-fold reduction in threshold current density under pulsed operation (5 µs-pulsed width, 1%-duty cycle) compared to the counterpart, and further realized a room-temperature continuous-wave lasing with a threshold current of 537 mA which corresponds to a threshold current density of 2.7 kA/cm2. When the injection current reached 1000 mA, the single-facet maximum output power and slope efficiency were 45.3 mW and 0.143 W/A, respectively. This work demonstrates significantly improved performances of InGaAs/AlGaAs quantum well lasers monolithically grown on silicon, providing a feasible solution to optimize the InGaAs quantum well structure.

4.
Cell Biol Toxicol ; 39(6): 3077-3100, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37495868

RESUMEN

Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.


Asunto(s)
Hiperhomocisteinemia , Células Intersticiales del Testículo , Ratones , Masculino , Animales , Células Intersticiales del Testículo/metabolismo , Testosterona , Hiperhomocisteinemia/metabolismo , Macrófagos/metabolismo , Factores de Transcripción/genética
5.
Opt Express ; 30(7): 11563-11571, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473098

RESUMEN

We report electrically pumped continuous-wave (CW) InAs/GaAs quantum dot lasers directly grown on planar exact silicon (001) with asymmetric waveguide structures. Surface hydrogen-annealing for the GaAs/ Si (001) templates and low-temperature growth for GaInP upper cladding layers were combined in the growth of the laser structure to achieve a high slope efficiency. For the broad-stripe edge-emitting lasers with 2-mm cavity length and 20-µm stripe width made from the above laser structure, a threshold current density of 203.5 A/cm2 and a single-facet slope efficiency of 0.158 W/A are achieved at ∼1.31 µm band under CW conditions. The extrapolated mean-time-to-failure reaches up to 21000 hours at room temperature, which is deduced from the data measured from C-mount packaged devices. Importantly, these results can provide a practical strategy to realize 1.3 µm wavelength band distributed feedback lasers directly on planar exact Si (001) templates with thin buffer layers.

6.
Org Biomol Chem ; 16(32): 5748-5751, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30039830

RESUMEN

An efficient and highly E-selective protocol for the synthesis of vinyl sulfones is described. This simple protocol demonstrates the first synthesis of vinyl sulfones via a silver-catalyzed C-S bond coupling reaction. In addition, the success of the reaction was found to be critically dependent on the use of TEMPO as the additive.

7.
Nucleic Acids Res ; 44(15): 7373-84, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27422869

RESUMEN

G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3' end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3' adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid-base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions.


Asunto(s)
Adenina/metabolismo , Biocatálisis , ADN Catalítico/metabolismo , G-Cuádruplex , Hemina/metabolismo , Peroxidasas/metabolismo , ARN Catalítico/metabolismo , Tampones (Química) , ADN Catalítico/química , Peroxidasas/química , ARN Catalítico/química
8.
Anal Chem ; 89(3): 1892-1899, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28208281

RESUMEN

Fluorogenic probes targeting G-quadruplex structures have emerged as the promising toolkit for functional research of G-quadruplex and biosensor development. However, their biosensing applications are still largely limited in in-tube detection. Herein, we proposed a fluorescent bioimaging method based on enzyme-generated G-quadruplexes for detecting apoptotic cells at the cell and tissue level, namely, terminal deoxynucleotidyl transferase (TdT)-activated de novo G-quadruplex synthesis (TAGS) assay. The detection target is genomic DNA fragmentation, a biochemical hallmark of apoptosis. The TAGS assay can efficiently "tag" DNA fragments via using their DNA double-strand breaks (DSBs) to initiate the de novo synthesis of G-quadruplexes by TdT with an unmodified G-rich dNTP pool, followed by a rapid fluorescent readout upon the binding of thioflavin T (ThT), a fluorogenic dye highly specific for G-quadruplex. The feasibility of the TAGS assay was proved by in situ sensitive detection of individual apoptotic cells in both cultured cells and tissue sections. The TAGS assay has notable advantages, including being label-free and having quick detection, high sensitivity and contrast, mix-and-read operation without tedious washing, and low cost. This method not only shows the feasibility of G-quadruplex in tissue bioanalysis but also provides a promising tool for basic research of apoptosis and drug evaluation for antitumor therapy.


Asunto(s)
Apoptosis , Técnicas Biosensibles , ADN Nucleotidilexotransferasa/metabolismo , G-Cuádruplex , Imagen Molecular/métodos , Roturas del ADN de Doble Cadena , Fluorescencia , Colorantes Fluorescentes/química , Células HeLa , Humanos , Límite de Detección , Reproducibilidad de los Resultados
9.
RSC Adv ; 13(10): 6389-6395, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36874943

RESUMEN

A portable acetylcholinesterase (AChE)-based electrochemical sensor based on a screen-printed carbon electrode (SPCE) and a miniature potentiostat was constructed for the rapid field detection of organophosphorus pesticides (OPs). Graphene (GR) and gold nanoparticles (AuNPs) were successively introduced onto SPCE for surface modification. Due to the synergistic effect of the two nanomaterials, the signal of the sensor has a significant enhancement. Take isocarbophos (ICP) as a model for chemical warfare agents (CAWs) and Ops; the SPCE/GR/AuNPs/AChE/Nafion sensor shows a wider linear range (0.1-2000 µg L-1), and a lower limit of detection (0.012 µg L-1) than SPCE/AChE/Nafion and SPCE/GR/AChE/Nafion sensors. Tests in actual fruit and tap water samples also yielded satisfactory results. Therefore, the proposed method can be used as a simple and cost-effective strategy for construction of portable electrochemical sensors for OP field detection.

10.
J Hematol Oncol ; 16(1): 84, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501059

RESUMEN

Hyperhomocysteinemia (HHcy) is closely associated with thrombotic diseases such as myocardial infarction and stroke. Enhanced platelet activation was observed in animals and humans with HHcy. However, the influence of HHcy on thrombopoiesis remains largely unknown. Here, we reported increased platelet count (PLT) in mice and zebrafish with HHcy. In hypertensive patients (n = 11,189), higher serum level of total Hcy was observed in participants with PLT ≥ 291 × 109/L (full adjusted ß, 0.59; 95% CI 0.14, 1.04). We used single-cell RNA sequencing (scRNA-seq) to characterize the impact of Hcy on transcriptome, cellular heterogeneity, and developmental trajectories of megakaryopoiesis from human umbilical cord blood (hUCB) CD34+ cells. Together with in vitro and in vivo analysis, we demonstrated that Hcy promoted megakaryocytes (MKs) differentiation via growth hormone (GH)-PI3K-Akt axis. Moreover, the effect of Hcy on thrombopoiesis is independent of thrombopoietin (TPO) because administration of Hcy also led to a significant increase of PLT in homozygous TPO receptor (Mpl) mutant mice and zebrafish. Administration of melatonin effectively reversed Hcy-induced thrombopoiesis in mice. ScRNA-seq showed that melatonin abolished Hcy-facilitated MK differentiation and maturation, inhibited the activation of GH-PI3K-Akt signaling. Our work reveals a previously unrecognized role of HHcy in thrombopoiesis and provides new insight into the mechanisms by which HHcy confers an increased thrombotic risk.Trial Registration clinicaltrials.gov Identifier: NCT00794885.


Asunto(s)
Hiperhomocisteinemia , Melatonina , Humanos , Ratones , Animales , Trombopoyesis/genética , Megacariocitos , Plaquetas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/genética , Pez Cebra , Hormona del Crecimiento/farmacología , Melatonina/farmacología , Hiperhomocisteinemia/complicaciones , Diferenciación Celular
11.
Chemistry ; 18(13): 3992-9, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22337073

RESUMEN

The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label-free and DNAzyme-based strategy to detect DNA ligase activity. This novel strategy relies on the ligation-trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin-DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40 U mL(-1) and a detection limit of 0.2 U mL(-1). Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a "split DNA machine" to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01 U mL(-1).


Asunto(s)
Colorimetría/métodos , ADN Ligasas/metabolismo , ADN Catalítico/metabolismo , ADN/química , ADN Ligasa (ATP) , ADN Ligasas/análisis , Peroxidasa de Rábano Silvestre/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico
12.
Talanta ; 236: 122822, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635212

RESUMEN

A novel label-free and enzyme-free detection strategy has been developed for the electrochemical biosensor detection of isocarbophos (ICP) using UiO-66-NH2 and aptamer as the signal transducers. In this work, the ICP aptamers were attached to UiO-66-NH2 through physical mixing and chemical combination methods. In the presence of ICP, the aptamers could undergo conformational change and bind to them, which prevent the electron transfer to the surface of electrode. By comparing the two conjunction approaches of aptasensors, these proposed strategies could selectively and sensitively detect ICP with a detection limit of 6 ng mL-1 (20.74 nM) and 0.9 ng mL-1 (3.11 nM). Furthermore, we have also demonstrated the capability of this strategy in the detection of ICP in real samples from vegetable and fruit extract, indicating the potential application of this strategy in food safety issues.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Malatión/análogos & derivados , Circonio
13.
EBioMedicine ; 86: 104312, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36335669

RESUMEN

BACKGROUND: The role of the IL6 family members in organ fibrosis, including renal interstitial fibrosis (TIF), has been widely explored. However, few studies have ever simultaneously examined them in the same cohort of patients. Besides, the role of leukemia inhibitory factor (LIF) in TIF remains unclear. METHODS: RNA-seq data of kidney biopsies from chronic kidney disease (CKD) patients, in both public databases and our assays, were used to analyze transcript levels of IL6 family members. Two TIF mouse models, the unilateral ureteral obstruction (UUO) and the ischemia reperfusion injury (IRI), were employed to validate the finding. To assess the role of LIF in vivo, short hairpin RNA, lenti-GFP-LIF was used to knockdown LIF receptor (LIFR), overexpress LIF, respectively. LIF-neutralizing antibody was used in therapeutic studies. Whether urinary LIF could be used as a promising predictor for CKD progression was investigated in a prospective observation patient cohort. FINDINGS: Among IL6 family members, LIF is the most upregulated one in both human and mouse renal fibrotic lesions. The mRNA level of LIF negatively correlated with eGFR with the strongest correlation and the smallest P value. Baseline urinary concentrations of LIF in CKD patients predict the risk of CKD progression to end-stage kidney disease by Kaplan-Meier analysis. In mouse TIF models, knockdown of LIFR alleviated TIF; conversely, overexpressing LIF exacerbated TIF. Most encouragingly, visible efficacy against TIF was observed by administering LIF-neutralizing antibodies to mice. Mechanistically, LIF-LIFR-EGR1 axis and Sonic Hedgehog signaling formed a vicious cycle between fibroblasts and proximal tubular cells to augment LIF expression and promote the pro-fibrotic response via ERK and STAT3 activation. INTERPRETATION: This study discovered that LIF is a noninvasive biomarker for the progression of CKD and a potential therapeutic target of TIF. FUNDINGS: Stated in the Acknowledgements section of the manuscript.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Factor Inhibidor de Leucemia/genética , Riñón/metabolismo , Interleucina-6/genética , Estudios Prospectivos , Proteínas Hedgehog , Fibrosis , Insuficiencia Renal Crónica/patología
14.
Front Physiol ; 13: 996166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407000

RESUMEN

Chronic kidney disease (CKD) is a global public health problem that shortens lifespan primarily by increasing the risk of cardiovascular diseases. Trimethylamine-N-oxide (TMAO), a gut microbiota-derived toxin produced by metabolizing high-choline or carnitine foods, is associated with cardiovascular events in patients with CKD. Although the deleterious effect of TMAO on CKD-induced cardiac injury has been confirmed by various researches, the mechanisms remain unclear. Here, we tested the hypothesis that TMAO aggravates CKD-induced cardiac injury and explores the potential mechanism. CD1 mice underwent 5/6 nephrectomy to induce CKD, and then fed with a diet supplemented with choline (1.2% total) for 8 weeks. Serum TMAO levels were elevated in CKD mice compared with SHAM group, and higher TMAO levels were found in choline-supplemented CKD mice compared with CKD group. Dietary choline aggravated CKD-induced cardiac dysfunction, and reducing TMAO levels via medicinal charcoal tablets improved cardiac dysfunction. RNA-seq analysis revealed that dietary choline affected cardiac angiogenesis in CKD mice. Reduced cardiac capillary density and expressions of angiogenesis-related genes were observed in choline-treated CKD mice. Furthermore, dietary choline inhibited cardiac Hif-1α protein level in CKD mice, and Hif-1α stabilizer FG-4592 could improve cardiac angiogenesis and dysfunction in CKD mice on a high-choline diet. In conclusion, these data indicate that dietary choline, via gut microbe-generated TMAO, inhibits cardiac angiogenesis by reducing Hif-1α protein level, ultimately aggravates cardiac dysfunction in CKD mice.

15.
Transl Res ; 246: 49-65, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35276386

RESUMEN

ZAK (sterile alpha motif and leucine zipper-containing kinase) is a newly discovered member of the subfamily of mitogen-activated protein kinase kinase kinases (MAP3Ks). The role of ZAK in kidney disease remains largely unknown. In this study, we systematically investigated the expression and function of ZAK in the progression of tubulointerstitial fibrosis (TIF). ZAK was induced, predominantly in tubular epithelium, in both fibrotic kidneys of human and mouse models with TIF. ZAK expression level was correlated with the extent of renal fibrosis and the decline of eGFR of CKD patients. Depleting ZAK attenuated TIF and inflammation induced by unilateral ureteral occlusion (UUO) together with decreased activation of p38 MAPK and Smads signaling. Moreover, we demonstrated that overexpressed ZAK was in complex with Smad2/3 and TGF-ß receptor Ⅰ (TßRI). Whereas, silencing endogenous ZAK ameliorated the amount of Smad2/3 recruited to TßRI. Moreover, we discovered a novel small molecule inhibitor of ZAK, named 6p. In vitro, incubation with 6p inhibited TGF-ß1-induced fibrogenic response in NRK52E cells. In vivo, intragastric administration of 6p ameliorated TIF and inflammation in UUO and unilateral ischemia-reperfusion injury model. Delayed administration of 6p was also effective in retarding the progression of the established TIF. In conclusion, ZAK is a novel therapeutic target for TIF, and 6p might be a potential therapeutic agent for TIF.


Asunto(s)
Enfermedades Renales , Quinasas Quinasa Quinasa PAM , Obstrucción Ureteral , Animales , Fibrosis , Humanos , Inflamación/patología , Riñón/patología , Quinasas Quinasa Quinasa PAM/genética , Ratones , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
16.
Anal Chem ; 82(5): 1935-41, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20148579

RESUMEN

DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6-100 U/mL) and a low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade.


Asunto(s)
Colorimetría/métodos , Metilación de ADN , Metilasas de Modificación del ADN/metabolismo , ADN Catalítico/metabolismo , Secuencia de Bases , ADN , Electroforesis en Gel de Poliacrilamida
17.
Anal Sci ; 36(7): 835-840, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31983714

RESUMEN

Sensitive and specific detection of nucleic acids or proteins, which act as biomarkers, is of great importance in disease diagnosis. By combing the concept and operation of an endonuclease-assisted target-responsive amplification method and peroxidase-mimic DNAzyme generated by terminal deoxynucleotidyl transferase (TdT), a novel and facile colorimetric biosensor was developed for DNA and protein. Target DNA and thrombin were chosen as representative biomolecules. The production of cleavage fragments can only be triggered by specific target binding and the following nicking process, which do not occur spontaneously. In the signal collection part, numerous guanine-rich DNA were produced through the prolongation of cleavage fragments by TdT and formed highly effective DNAzyme with hemin. In this novel amplification method, we succeeded in realizing sensitive and specific detection of target DNA and thrombin. Under optimal conditions, target DNA can be detected as low as 1 pM, and thrombin with a detection limit of 100 pM. The method also proves the potential versatility and feasibility of TdT-generated DNAzyme in various bio-analyses.


Asunto(s)
ADN Nucleotidilexotransferasa/metabolismo , ADN Catalítico/metabolismo , ADN/análisis , Proteínas/análisis , ADN/biosíntesis , ADN Nucleotidilexotransferasa/química , ADN Catalítico/química , Humanos , Técnicas de Amplificación de Ácido Nucleico , Proteínas/metabolismo
18.
ACS Appl Mater Interfaces ; 11(46): 43156-43165, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31652043

RESUMEN

Detoxifying materials against chemical warfare agents (CWAs) and their simulants are highly desired for proper handling of contamination by and destruction of CWAs. Herein, we report a facile layer-by-layer fabrication of core-shell Fe3O4@UiO-66-NH2 and its application in fast degradation of CWA simulants. The Fe3O4@UiO-66-NH2 composite was prepared through a layer-by-layer epitaxial growth strategy, by alternately immersing Fe3O4 nanoparticles in ethanol solutions of a metal node [Zr6O4(OH)4]12+ precursor and organic linkers [NH2-BDC, 2-aminoterephthalic acid], respectively, and separating using a magnet. As confirmed by characterization results, the Fe3O4@UiO-66-NH2 composites with 24.4 µmol/g Zr6 node content showed a well-defined core-shell structure as well as good thermal and chemical stability. These core-shell magnetic metal-organic frameworks (MOFs) were further tested in the catalytic hydrolysis of dimethyl-4-nitrophenyl phosphate (a nerve agent simulant) and demonstrated 36 times higher catalytic activity than the UiO-66-NH2 powder due to their highly defective surface, high percentage of MOFs on the surface, and their rich mesoporous structure. Since magnetism was retained after the coating of MOFs, Fe3O4@UiO-66-NH2 could be easily recovered and reused after catalysis.

19.
Methods Mol Biol ; 1500: 133-151, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27813006

RESUMEN

DNA G-quadruplexes are special three-dimensional (3D) DNA nanostructures formed by specific G-rich DNA sequences. These 3D DNA nanostructures can bind with hemin and significantly improve the intrinsic peroxidase activity of hemin. Besides this function, they also enhance the fluorescence intensity of some G-quadruplex-specific dyes. Owing to these features, G-quadruplexes possess several superiorities in the detection of enzymes involved in nucleic acid metabolism, including facile probe fabrication without labeling, simple detection process without washing or separation steps, rapid observation by naked eyes, and easy integration with nucleic acid amplification strategies to amplify signals. Herein, we describe two strategies for label-free detection of enzyme activity based on DNA G-quadruplexes. To increase sensitivity, template-dependent and template-independent DNA amplifications were introduced for the amplification of G-rich DNA sequences. DNA methyltransferase and terminal deoxynucleotidyl transferase were detected as two model analytes, respectively.


Asunto(s)
Bioensayo/métodos , ADN/química , Nanoestructuras/química , Secuencia de Bases , Técnicas Biosensibles/métodos , Colorimetría/métodos , Metilasas de Modificación del ADN/química , Fluorescencia , G-Cuádruplex , Hemina/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Peroxidasa/química
20.
ACS Appl Mater Interfaces ; 8(35): 22801-7, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27526861

RESUMEN

DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and ß-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system.


Asunto(s)
ADN/química , ADN Catalítico , Hidrogeles , Polimerizacion , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA