Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 35(28): 9177-9183, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31265303

RESUMEN

A water droplet placed on a surface is usually round owing to surface tension. Restraining a droplet to a rectangle shape has been rarely reported. Herein, we fabricated three meshes with diverse wettability including ordinary mesh, superhydropilic mesh, and quasi-rectangular-restraining mesh. The profiles of water droplets on these three meshes were entirely different from the top view, especially for the quasi-rectangular-restraining mesh, which enables the water droplet on it to achieve the rectangular shape. The surface morphologies and chemical compositions of the meshes were characterized by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Moreover, the influences of processing parameters of the quasi-rectangular-restraining mesh on the quasi-rectangular quality of the water droplet on it were investigated to obtain the relatively optimum processing parameters. The dynamic properties of water droplets on the three meshes were compared, and forces acting on the water droplets during the spreading and shrinking processes on the three meshes were qualitatively analyzed. Additionally, we studied the influences of falling height and water volume on the quasi-rectangular quality of the water droplet on the quasi-rectangular-restraining mesh. Water droplets on the quasi-rectangular-restraining mesh demonstrated good stability under vibration and the droplet could maintain the quasi-rectangular quality on the quasi-rectangular-restraining mesh for about 7 days, revealing a good durability. Further, the large-scaled fabrication of the quasi-rectangular-restraining mesh was realized.

2.
ACS Appl Mater Interfaces ; 11(26): 23808-23814, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31252508

RESUMEN

Pumpless and directed gas transportation in aqueous environments has promising application prospects in various domains. So far, researches on gas transportation based on superaerophilic channels are limited to the transportation of fewer bubbles with low transportation velocity. How to enhance the transportation velocity and realize the transportation of a large quantity of bubbles (especially for gas jet) for practical applications remain unclear. Here, a half-open wedge-shaped channel with subaqueous superaerophilicity is fabricated, which demonstrates excellent bubble affinity and can realize the pumpless and directed bubble transportation. It is proposed that a Laplace force is the main driving force during the transportation and the magnitude of the force is influenced by both the wedge angle of the channel and geometric parameters of the bubble whereas the direction of the force is determined by the orientation of the channel. By applying a precovered air film on the subaqueous superaerophilic wedge-shaped channel, bubbles demonstrate a higher transportation velocity. Additionally, the prepared channel shows an outstanding affinity to oxygen jet at high flux, which can be utilized to transport oxygen for continuous subaqueous oxygen supplementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA