RESUMEN
Exotic physics could emerge from interplay between geometry and correlation. In fractional quantum Hall (FQH) states1, novel collective excitations called chiral graviton modes (CGMs) are proposed as quanta of fluctuations of an internal quantum metric under a quantum geometry description2-5. Such modes are condensed-matter analogues of gravitons that are hypothetical spin-2 bosons. They are characterized by polarized states with chirality6-8 of +2 or -2, and energy gaps coinciding with the fundamental neutral collective excitations (namely, magnetorotons9,10) in the long-wavelength limit. However, CGMs remain experimentally inaccessible. Here we observe chiral spin-2 long-wavelength magnetorotons using inelastic scattering of circularly polarized lights, providing strong evidence for CGMs in FQH liquids. At filling factor v = 1/3, a gapped mode identified as the long-wavelength magnetoroton emerges under a specific polarization scheme corresponding to angular momentum S = -2, which persists at extremely long wavelength. Remarkably, the mode chirality remains -2 at v = 2/5 but becomes the opposite at v = 2/3 and 3/5. The modes have characteristic energies and sharp peaks with marked temperature and filling-factor dependence, corroborating the assignment of long-wavelength magnetorotons. The observations capture the essentials of CGMs and support the FQH geometrical description, paving the way to unveil rich physics of quantum metric effects in topological correlated systems.
RESUMEN
Cytonuclear disruption may accompany allopolyploid evolution as a consequence of the merger of different nuclear genomes in a cellular environment having only one set of progenitor organellar genomes. One path to reconcile potential cytonuclear mismatch is biased expression for maternal gene duplicates (homoeologs) encoding proteins that target to plastids and/or mitochondria. Assessment of this transcriptional form of cytonuclear coevolution at the level of individual cells or cell types remains unexplored. Using single-cell (sc-) and single-nucleus (sn-) RNAseq data from eight tissues in three allopolyploid species, we characterized cell type-specific variations of cytonuclear coevolutionary homoeologous expression and demonstrated the temporal dynamics of expression patterns across development stages during cotton fiber development. Our results provide unique insights into transcriptional cytonuclear coevolution in plant allopolyploids at the single-cell level.
Asunto(s)
Mitocondrias , Plastidios , Mitocondrias/genética , Diferenciación Celular , Núcleo SolitarioRESUMEN
A reliable and stable hydrogen gas (H2) supply will benefit agricultural laboratory and field trials. Here, we assessed ammonia borane (AB), an efficient hydrogen storage material used in the energy industry, and determined its effect on plant physiology and the corresponding mechanism. Through hydroponics and pot experiments, we discovered that AB increases tomato (Solanum lycopersicum) lateral root (LR) branching and this function depended on the increased endogenous H2 level caused by the sustainable H2 supply. In particular, AB might trigger LR primordia initiation. Transgenic tomato and Arabidopsis (Arabidopsis thaliana) expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only accumulated higher endogenous H2 and phytomelatonin levels but also displayed pronounced LR branching. These endogenous H2 responses achieved by AB or genetic manipulation were sensitive to the pharmacological removal of phytomelatonin, indicating the downstream role of phytomelatonin in endogenous H2 control of LR formation. Consistently, extra H2 supply failed to influence the LR defective phenotypes in phytomelatonin synthetic mutants. Molecular evidence showed that the phytomelatonin-regulated auxin signaling network and cell-cycle regulation were associated with the AB/H2 control of LR branching. Also, AB and melatonin had little effect on LR branching in the presence of auxin synthetic inhibitors. Collectively, our integrated approaches show that supplying H2 via AB increases LR branching via phytomelatonin signaling. This finding might open the way for applying hydrogen storage materials to horticultural production.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Amoníaco/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/farmacología , Hidrógeno , Raíces de Plantas/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Ethylene response factors (ERFs) are downstream components of ethylene-signaling pathways known to play critical roles in ethylene-controlled climacteric fruit ripening, yet little is known about the molecular mechanism underlying their mode of action. Here, we demonstrate that SlERF.F12, a member of the ERF.F subfamily containing Ethylene-responsive element-binding factor-associated Amphiphilic Repression (EAR) motifs, negatively regulates the onset of tomato (Solanum lycopersicum) fruit ripening by recruiting the co-repressor TOPLESS 2 (TPL2) and the histone deacetylases (HDAs) HDA1/HDA3 to repress the transcription of ripening-related genes. The SlERF.F12-mediated transcriptional repression of key ripening-related genes 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2 (ACS2), ACS4, POLYGALACTURONASE 2a, and PECTATE LYASE is dependent on the presence of its C-terminal EAR motif. We show that SlERF.F12 interacts with the co-repressor TPL2 via the C-terminal EAR motif and recruits HDAs SlHDA1 and SlHDA3 to form a tripartite complex in vivo that actively represses transcription of ripening genes by decreasing the level of the permissive histone acetylation marks H3K9Ac and H3K27Ac at their promoter regions. These findings provide new insights into the ripening regulatory network and uncover a direct link between repressor ERFs and histone modifiers in modulating the transition to ripening of climacteric fruit.
Asunto(s)
Solanum lycopersicum , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
c-Myc is a critical regulator of cell proliferation and growth. Elevated levels of c-Myc cause transcriptional amplification, leading to various types of cancers. Small molecules that specifically inhibit c-Myc-dependent regulation are potentially invaluable for anticancer therapy. Because c-Myc does not have enzymatic activity or targetable pockets, researchers have attempted to obtain small molecules that inhibit c-Myc cofactors, activate c-Myc repressors, or target epigenetic modifications to regulate the chromatin of c-Myc-addicted cancer without any clinical success. In this study, we screened for c-Myc inhibitors using a cell-dependent assay system in which the expression of c-Myc and its transcriptional activity can be inferred from monomeric Keima and enhanced GFP fluorescence, respectively. We identified one mitochondrial inhibitor, antimycin A, as a hit compound. The compound enhanced the c-Myc phosphorylation of threonine-58, consequently increasing the proteasome-mediated c-Myc degradation. The mechanistic analysis of antimycin A revealed that it enhanced the degradation of c-Myc protein through the activation of glycogen synthetic kinase 3 by reactive oxygen species (ROS) from damaged mitochondria. Furthermore, we found that the inhibition of cell growth by antimycin A was caused by both ROS-dependent and ROS-independent pathways. Interestingly, ROS-dependent growth inhibition occurred only in the presence of c-Myc, which may reflect the representative features of cancer cells. Consistently, the antimycin A sensitivity of cells was correlated to the endogenous c-Myc levels in various cancer cells. Overall, our study provides an effective strategy for identifying c-Myc inhibitors and proposes a novel concept for utilizing ROS inducers for cancer therapy.
Asunto(s)
Antimicina A , Proteolisis , Proteínas Proto-Oncogénicas c-myc , Antimicina A/farmacología , Línea Celular Tumoral , Ensayos Analíticos de Alto Rendimiento , Fosforilación , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Treonina/metabolismo , Proteolisis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Antineoplásicos/farmacología , Células HCT116 , Células HeLa , Supervivencia Celular/efectos de los fármacos , HumanosRESUMEN
Microalgae play a crucial role in global carbon cycling as they convert carbon dioxide into various valuable macromolecules. Among them, Haematococcus pluvialis (H. pluvialis) is the richest natural source of astaxanthin (AXT), which is a valuable antioxidant, anti-inflammatory, and antiapoptosis agent. These benefits make AXT highly commercially valuable in pharmaceuticals, cosmetics, and nutritional industries. However, intrinsic genetic characteristics and extrinsic cultivation conditions influence biomass gains, leading to low productivity and extraction as the main techno-economic bottlenecks in this industry. Thus, detecting AXT in H. pluvialis is essential to determine the influence of multiple parameters on biocompound accumulation, enabling optimization of cultivation and enrichment of AXT-rich H. pluvialis cells. This work developed an opto-acousto-fluidic microplatform for detection, analysis, and sorting of microalgae. Via label-free monitoring and extraction of sample-induced ultrasonic signals, a photoacoustic microscopic system was proposed to provide a full-field visualization of AXT's content and distribution inside H. pluvialis cells. When employed as on-chip image-based flow cytometry, our microplatform can also offer high-throughput measurements of intracellular AXT in real time, which demonstrates similar results to conventional spectrophotometry methods and further reveals the heterogeneity of AXT content at the single-cell level. In addition, a solenoid valve-pump dual-mode cell sorter was integrated for effective sorting of cells with a maximum working frequency of 0.77 Hz, reducing the fluid response time by 50% in rising and 40-fold in recovery. The H. pluvialis cells which have more AXT accumulation (>30 µm in diameter) were 4.38-fold enriched with almost no dead empty and small green cells. According to the results, automated and reliable photoacoustics-activated cell sorting (PA-ACS) can screen AXT-rich cells and remove impurities at the terminal stage of cultivation, thereby increasing the effectiveness and purity of AXT extraction. The proposed system can be further adopted to enrich strains and mutants for the production of biofuels or other rare organic substances such as ß-carotene and lutein.
Asunto(s)
Chlorophyceae , Microalgas , Luteína , Análisis Espectral , Movimiento CelularRESUMEN
The investigation of new properties in two-dimensional (2D) multiferroic heterostructures is significant. In this work, the electronic properties and magnetic anisotropy energies (MAEs) of 2D multiferroic RuClF/AgBiP2S6 van der Waals (vdW) heterostructures are systematically studied by first principles calculations based on density functional theory (DFT). The Hubbard on-site Coulomb parameter (U) of Ru atoms is necessary to account for the strong correlation among the three-dimensional electrons of Ru. RuClF/AgBiP2S6 heterostructures in different polarizations (RuClF/AgBiP2S6-P↑ and RuClF/AgBiP2S6-P↓) are ferromagnetic semiconductors with stable structures. Valley polarizations are present in the band structures of RuClF/AgBiP2S6 heterostructures with spin-orbit coupling (SOC), the valley splitting energies of which are 279 meV and 263 meV, respectively. The MAEs of RuClF/AgBiP2S6 heterostructures indicate perpendicular magnetic anisotropy (PMA), which are primarily attributed to the differences in matrix elements within Ru (dyz, dz2) orbitals. In addition, valley splittings and MAEs of RuClF/AgBiP2S6 heterostructures are modified at different biaxial strains. Specifically, the highest valley splittings are 283 meV and 287 meV at ε = 2%, while they disappear at ε = -6%. The PMA of RuClF/AgBiP2S6-P↑ is gradually decreased at biaxial strains of -6% to 2%, and MAE is transformed into in-plane magnetic anisotropy (IMA) at ε = 4%. RuClF/AgBiP2S6-P↓ maintains PMA at different strains. The study of non-volatile electrical control of valley splitting phenomena in multiferroic RuClF/AgBiP2S6 heterostructures is crucial in the field of valleytronic devices, which has important theoretical significance.
RESUMEN
Two-dimensional (2D) van der Waals (vdW) heterostructures have potential applications in new low-dimensional spintronic devices owing to their unique electronic properties and magnetic anisotropy energies (MAEs). The electronic structures and magnetic properties of RuClF/WSe2 heterostructure are calculated using first-principles calculations. The most stable RuClF/WSe2 heterostructure is selected for property analysis. RuClF/WSe2 heterostructure has half-metallicity. Considering spin-orbit coupling (SOC), band inversion is present in the RuClF/WSe2 heterostructure, which is also demonstrated by the weight of the energy contributions. The local density of states (LDOS) of the edge states can provide strong evidence that the RuClF/WSe2 heterostructure has topological properties. The MAE of RuClF/WSe2 heterostructure is in-plane magnetic anisotropy (IMA), which mainly originates from the contribution of matrix element difference in Ru (dxy, dx2-y2) orbitals. The electronic properties and MAE of RuClF/WSe2 heterostructure can be regulated by biaxial strains and electric fields. The band inversion phenomenon is enhanced at electric fields in the opposite direction, which is also modified at different biaxial strains. However, the band inversion phenomenon disappears at the biaxial strains of 6% and an electric field of 0.5 V Å-1. The MAE of RuClF/WSe2 heterostructure is transformed from IMA into perpendicular magnetic anisotropy (PMA) at certain compressive strains and positively directed electric fields. The above results indicate that the RuClF/WSe2 heterostructure has potential applications in spintronic devices.
RESUMEN
BACKGROUND: Magnesium is critical for musculoskeletal health. Hypertensive patients are at high risk for magnesium deficiency and muscle loss. This study aimed to explore the association between magnesium intake and muscle mass in patients with hypertension. METHODS: In this population-based cross-sectional study, 10,279 U.S. hypertensive adults aged 20 years or older were derived from the National Health and Nutrition Examination Survey in 1999-2006 and 2011-2018. Magnesium (Mg) intake from diet and supplements was assessed using 24-hour diet recalls. Muscle mass was evaluated by appendicular skeletal muscle mass index (ASMI, total ASM in kilograms [kg] divided by square of height in meters [m2]). The association of Mg intake with ASMI was estimated using weighted multivariable-adjusted linear regression models and restricted cubic splines. RESULTS: Dose-response analyses showed a positive linear correlation between dietary Mg intake and ASMI. Every additional 100 mg/day in dietary Mg was associated with 0.04 kg/m2 (95% confidence interval [CI] 0.02-0.06 kg/m2) higher ASMI. The ASMI in participants who met the recommended dietary allowance (RDA) for dietary Mg was 0.10 kg/m2 (95% CI 0.04-0.16 kg/m2) higher than those whose dietary Mg was below estimated average requirement (EAR). However, the relationship of Mg intake from supplements with ASMI was not identified. CONCLUSION: Higher level of dietary Mg intake rather than Mg supplements was associated with more muscle mass in U.S. adults with hypertension, which highlights the importance of meeting the recommended levels for dietary Mg intake.
Asunto(s)
Hipertensión , Magnesio , Adulto , Humanos , Encuestas Nutricionales , Estudios Transversales , Hipertensión/epidemiología , Músculos , Músculo EsqueléticoRESUMEN
KEY MESSAGE: Purine permease PUP11 is essential for rice seed development, regulates the seed setting rate, and influences the cytokinin content, sugar transport, and starch biosynthesis during grain development. The distribution of cytokinins in plant tissues determines plant growth and development and is regulated by several cytokinin transporters, including purine permease (PUP). Thirteen PUP genes have been identified within the rice genome; however, the functions of most of these genes remain poorly understood. We found that pup11 mutants showed extremely low seed setting rates and a unique filled seed distribution. Moreover, seed formation arrest in these mutants was associated with the disappearance of accumulated starch 10 days after flowering. PUP11 has two major transcripts with different expression patterns and subcellular locations, and further studies revealed that they have redundant positive roles in regulating the seed setting rate. We also found that type-A Response Regulator (RR) genes were upregulated in the developing grains of the pup11 mutant compared with those in the wild type. The results also showed that PUP11 altered the expression of several sucrose transporters and significantly upregulated certain starch biosynthesis genes. In summary, our results indicate that PUP11 influences the rice seed setting rate by regulating sucrose transport and starch accumulation during grain filling. This research provides new insights into the relationship between cytokinins and seed development, which may help improve cereal yield.
Asunto(s)
Proteínas de Transporte de Nucleobases , Oryza , Oryza/genética , Semillas/genética , Grano Comestible/genética , Citocininas , Proteínas de Transporte de Membrana , Almidón , SacarosaRESUMEN
BACKGROUND: People are more likely to fall victim to depression during adolescence since it is a period of rapid biopsychosocial transformation. Despite this, most depression research has concentrated on clinical issues, and evaluating depressive symptoms in teenagers is not as widespread. This study used item response theory (IRT) to examine the psychometric properties of the Patient Health Report scale (PHQ-9) in Chinese adolescents. Meanwhile, item function difference tests were used to check whether there were differences in depression symptoms in this group based on education and gender. METHODS: In this research, the PHQ-9 was employed as a measurement tool, and 5958 valid data points were obtained from 12 secondary schools in China (Mage = 13.484; SDage = 1.627; range 11-19 years; 52.17% boys). RESULTS: IRT shows that all items of the PHQ-9 satisfy monotonicity, unidimensionality and local independence and that they have good psychometric properties. Furthermore, DIF analysis revealed gender and educational disparities in adolescent depressive symptoms. CONCLUSION: The study indicates that the PHQ-9 possesses favourable psychometric properties for use in Chinese adolescents. As a result, it serves as a valuable tool for effectively screening depressive symptoms in adolescents. It provides a foundation for prioritizing the development of secondary school students' physical and mental health.
RESUMEN
Cuticular wax, cutin and suberin polyesters covering the surface of some fleshy fruit are tightly associated with skin color and appearance. ß-Ketoacyl-CoA synthase (KCS) is a rate-limiting enzyme participating in the synthesis of very-long-chain fatty acids (VLCFAs), the essential precursors of cuticular waxes and aliphatic monomers of suberin. However, information on the KCS gene family in pear genome and the specific members involved in pear fruit skin formation remain unclear. In the present study, we performed an investigation of the composition and amount of cuticular waxes, cutin and aliphatic suberin in skins of four sand pear varieties with distinct colors (russet, semi-russet, and green) and demonstrated that the metabolic shifts of cuticular waxes and suberin leading to the significant differences of sand pear skin color. A genome-wide identification of KCS genes from the pear genome was conducted and 35 KCS coding genes were characterized and analyzed. Expression profile analysis revealed that the KCS genes had diverse expression patterns among different pear skins and the transcript abundance of PbrKCS15, PbrKCS19, PbrKCS24, and PbrKCS28 were consistent with the accumulation of cuticular waxes and suberin in fruit skin respectively. Subcellular localization analysis demonstrated that PbrKCS15, PbrKCS19, PbrKCS24 and PbrKCS28 located on the endoplasmic reticulum (ER). Further, transient over-expression of PbrKCS15, PbrKCS19, and PbrKCS24 in pear fruit skins significantly increased cuticular wax accumulation, whereas PbrKCS28 notably induced suberin deposition. In conclusion, pear fruit skin color and appearance are controlled in a coordinated way by the deposition of the cuticular waxes and suberin. PbrKCS15, PbrKCS19, and PbrKCS24 are involved in cuticular wax biosynthesis, and PbrKCS28 is involved in suberin biosynthesis, which play essential roles in pear fruit skin formation. Moreover, this work provides a foundation for further understanding the functions of KCS genes in pear.
Asunto(s)
Pyrus , Pyrus/genética , Pyrus/metabolismo , Frutas/genética , Frutas/metabolismo , Ceras/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
BACKGROUND: Studies included in a meta-analysis are often heterogeneous. The traditional random-effects models assume their true effects to follow a normal distribution, while it is unclear if this critical assumption is practical. Violations of this between-study normality assumption could lead to problematic meta-analytical conclusions. We aimed to empirically examine if this assumption is valid in published meta-analyses. METHODS: In this cross-sectional study, we collected meta-analyses available in the Cochrane Library with at least 10 studies and with between-study variance estimates > 0. For each extracted meta-analysis, we performed the Shapiro-Wilk (SW) test to quantitatively assess the between-study normality assumption. For binary outcomes, we assessed between-study normality for odds ratios (ORs), relative risks (RRs), and risk differences (RDs). Subgroup analyses based on sample sizes and event rates were used to rule out the potential confounders. In addition, we obtained the quantile-quantile (Q-Q) plot of study-specific standardized residuals for visually assessing between-study normality. RESULTS: Based on 4234 eligible meta-analyses with binary outcomes and 3433 with non-binary outcomes, the proportion of meta-analyses that had statistically significant non-normality varied from 15.1 to 26.2%. RDs and non-binary outcomes led to more frequent non-normality issues than ORs and RRs. For binary outcomes, the between-study non-normality was more frequently found in meta-analyses with larger sample sizes and event rates away from 0 and 100%. The agreements of assessing the normality between two independent researchers based on Q-Q plots were fair or moderate. CONCLUSIONS: The between-study normality assumption is commonly violated in Cochrane meta-analyses. This assumption should be routinely assessed when performing a meta-analysis. When it may not hold, alternative meta-analysis methods that do not make this assumption should be considered.
Asunto(s)
Estudios Transversales , Humanos , Tamaño de la Muestra , Oportunidad RelativaRESUMEN
MAIN CONCLUSION: PpyMYB144 directly activates the promoter of PpyCYP86B1, promotes the synthesis of α, ω-diacids, and involves in pear fruit skin russeting. Russeting is an economically important surface disorder in pear (Pyrus pyrifolia) fruit. Previous research has demonstrated that suberin is the pivotal chemical component contributing to pear fruit skin russeting, and fruit bagging treatment effectively reduces the amount of suberin of fruits, and thereby reduces the russeting phenotype. However, the mechanisms of pear fruit skin russeting remain largely unclear, particularly the transcriptional regulation. Here, we dissected suberin concentration and composition of pear fruits along fruit development and confirmed that α, ω-diacids are the predominant constituents in russeted pear fruit skins. Two cytochrome P450 monooxygenase (CYP) family genes (PpyCYP86A1 and PpyCYP86B1) and nine MYB genes were isolated from pear fruit. Expressions of PpyCYP86A1, PpyCYP86B1, and five MYB genes (PpyMYB34, PpyMYB138, PpyMYB138-like, PpyMYB139, and PpyMYB144) were up-regulated during fruit russeting and showed significant correlations with the changes of α, ω-diacids. In addition, dual-luciferase assays indicated that PpyMYB144 could trans-activate the promoter of PpyCYP86B1, and the activation was abolished by motif mutagenesis of AC element on the PpyCYP86B1 promoter. Further, Agrobacterium-mediated transient expression of PpyCYP86B1 and PpyMYB144 in pear fruits induced the deposition of aliphatic suberin. Thus, PpyMYB144 is a novel direct activator of PpyCYP86B1 and contributes to pear fruit skin russeting.
Asunto(s)
Pyrus , Pyrus/genética , Frutas/genética , Metabolismo Secundario , Sistema Enzimático del Citocromo P-450/genética , AgrobacteriumRESUMEN
INTRODUCTION: The relationship between obesity and cognitive impairment (CI) is highly heterogeneous in previous studies, which may be due to insufficient consideration of anthropometric indicators and sex. This study compared the cross-sectional relationships among body mass index (BMI), waist-to-hip ratio (WHR), and CI among people aged ≥40 years, and sex-specific relationships were also considered. METHODS: This was a population-based cross-sectional study with a cluster sampling design. CI was defined as a Mini-Mental State Examination score lower than the cutoff value. Multivariate logistic regression was used. BMI and WHR were fitted as both restricted cubic splines and categorical data. Stratified analysis and interaction analysis were performed to explore the sex-specific relationship. RESULTS: A total of 1,792 subjects (40.5% male) were analyzed, and 230 were confirmed to have CI. The relationships among BMI, WHR, and CI were significant (poverall = 0.023, pnonlinear = 0.097; poverall = 0.017, pnonlinear = 0.078, respectively) but exhibited an opposite trend in the total population in the analyses with BMI and WHR as restricted cubic splines. Further categorical analyses showed that subjects with a BMI <23 kg/m2 tended to have a higher risk of CI than those with BMI ≥23 kg/m2 (16.2% vs. 11.8%, p = 0.017; OR = 1.366 [0.969-1.926], p = 0.075), and subjects with a WHR >0.92 had a significantly higher risk of CI than those with a WHR ≤0.92 (11.7% vs. 16.2%, p = 0.011; OR = 1.619 [1.161-2.258], p = 0.005). In addition, the relationship between a low BMI and CI was more significant in males (p = 0.034), while the relationship between a high WHR and CI was more significant in females (p = 0.002). Further studies are needed to confirm the sex differences because of the marginal significance result in the interaction analysis (p = 0.051 for interaction term BMI × sex; p = 0.056 for interaction term WHR × sex). CONCLUSION: The relationships among BMI, WHR, and CI exhibit an opposite trend. A low BMI or high WHR was positively associated with CI, which was more prominent in males for a low BMI and females for a high WHR.
Asunto(s)
Disfunción Cognitiva , Humanos , Masculino , Femenino , Relación Cintura-Cadera , Índice de Masa Corporal , Estudios Transversales , Factores de Riesgo , Disfunción Cognitiva/epidemiología , China/epidemiologíaRESUMEN
Gut-derived neuroactive metabolites from amino acids perform a broad range of physiological roles in the body. However, the interaction between microbiota and epithelium in the metabolism of amino acids with neuroactive properties remains unclear in the colon of piglets. To investigate the microbial and epithelial metabolism, metagenomics and mucosal metabolomics were performed using colonic samples from 12 ileum-canulated piglets subjected to a 25-day infusion with saline or antibiotics. We categorized 23 metabolites derived from the metabolism of tryptophan, glutamate, and tyrosine, known as precursors of neuroactive metabolites. Microbial enzymes involved in the kynurenine synthesis via arylformamidase, 4-aminobutyric acid (GABA) synthesis via putrescine aminotransferase, and tyramine synthesis via tyrosine decarboxylase were identified in Clostridiales bacterium, uncultured Blautia sp., and Methanobrevibacter wolinii, respectively. Antibiotics significantly affected the microbiota involved in tryptophan-kynurenine and glutamate-GABA metabolism. An increase in the relative abundance of putrescine aminotransferase and Blautia sp. correlated positively with an increase in luminal GABA concentration. Overall, our findings provide new insights into the microbial ability to metabolize key amino acids that are precursors of neuroactive metabolites.
Asunto(s)
Aminoácidos , Triptófano , Animales , Porcinos , Triptófano/metabolismo , Quinurenina , Antibacterianos/farmacología , Putrescina , Ácido Glutámico , Ácido gamma-Aminobutírico/metabolismo , Colon/metabolismo , Transaminasas/genéticaRESUMEN
Two-dimensional (2D) ferromagnetic (FM) materials with valley polarization are highly desirable for use in valleytronic devices. The 2D Janus materials have fascinating physical properties due to their asymmetrical structures. In this work, the electronic structure and magnetic properties of Janus RuXY (X, Y = Br, Cl, F, I, X ≠ Y) monolayers are systematically studied using first-principles calculations. RuBrCl, RuBrF, and RuClF monolayers are all FM semiconductors. The valley polarization is present in the band structure and this is determined by the spin orbit coupling (SOC). The valley splitting energy of the RuClF monolayer is as large as 204 meV, with a perpendicular magnetic anisotropy (PMA) energy of 1.918 mJ m-2 and a Curie temperature of 316 K. Therefore, spontaneous valley polarization at room temperature will be seen in the RuClF monolayer. The Curie temperature of the RuBrF monolayer is higher than that of the RuClF, but the magnetic anisotropy energy (MAE) is in-plane magnetic anisotropy (IMA). The valley splitting energy of the RuBrCl monolayer is higher and the PMA energy is lower than that of the RuClF monolayer. The Curie temperature was only 197 K. The valley polarization was modulated in the RuXY monolayers at different biaxial strains, during which the semiconductor properties are still maintained. The PMA of the RuClF and RuBrCl monolayers is enhanced by the biaxial compressive strains, which are mainly attributed to the variation of the (dyz, d2z) orbital matrix elements of the Ru atoms. The MAE of the RuBrF monolayer is tuned from IMA into PMA at a biaxial strain of -6%. These results show an example of a 2D Janus ferrovalley material.
RESUMEN
SARS-CoV-2 infection causes injuries of not only the lungs but also the heart and endothelial cells in vasculature of multiple organs, and induces systemic inflammation and immune over-reactions, which makes COVID-19 a disease phenome that simultaneously affects multiple systems. Cardiovascular diseases (CVD) are intrinsic risk and causative factors for severe COVID-19 comorbidities and death. The wide-spread infection and reinfection of SARS-CoV-2 variants and the long-COVID may become a new common threat to human health and propose unprecedented impact on the risk factors, pathophysiology, and pharmacology of many diseases including CVD for a long time. COVID-19 has highlighted the urgent demand for precision medicine which needs new knowledge network to innovate disease taxonomy for more precise diagnosis, therapy, and prevention of disease. A deeper understanding of CVD in the setting of COVID-19 phenome requires a paradigm shift from the current phenotypic study that focuses on the virus or individual symptoms to phenomics of COVID-19 that addresses the inter-connectedness of clinical phenotypes, i.e., clinical phenome. Here, we summarize the CVD manifestations in the full clinical spectrum of COVID-19, and the phenome-wide association study of CVD interrelated to COVID-19. We discuss the underlying biology for CVD in the COVID-19 phenome and the concept of precision medicine with new phenomic taxonomy that addresses the overall pathophysiological responses of the body to the SARS-CoV-2 infection. We also briefly discuss the unique taxonomy of disease as Zheng-hou patterns in traditional Chinese medicine, and their potential implications in precision medicine of CVD in the post-COVID-19 era.
Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/genética , Fenómica , Medicina de Precisión , SARS-CoV-2/genética , Síndrome Post Agudo de COVID-19 , Células EndotelialesRESUMEN
BACKGROUND: The relationship between total cholesterol (TC) levels and the severity of hypertriglyceridemic acute pancreatitis (HTGAP) remains unclear. AIMS: The aim of this study was to investigate the relationship between the levels of TC at admission with the severity of HTGAP, in order to apply it as a reliable predictor at early stage in clinical practice. METHODS: We performed a cohort study including 249 patients with AHTGP between November 2012 and April 2022 in XuanWu Hospital. Fasting TC was assayed within 24 h of admission, age, gender, body mass index, hypertension, diabetes mellitus, drinking, smoking, neutrophil-lymphocyte ratio, C-reactive protein and glucose were recorded as confounding factors. To evaluate the relationship of TC and the severity of HTGAP, we used smooth curve fitting and a segmented regression model with adjustment of confounding factors to analyze the threshold effect between TC and SAP occurrence risk. RESULTS: 249 Patients were enrolled. The incidence of SAP was 25.3% (63/249). A nonlinear relationship between TC level and the severity of HTGAP. 6.09 mmol/L was the optimal TC value associated with the lowest risk of SAP occurrence. Moreover, TC level was negatively correlated with risk of severe HTGAP occurrence for TC < 6.09 mmol/L (OR 0.45, 95% CI 0.23-0.85, P = 0.014) and positively correlated for TC > 6.09 mmol/L in HTGAP patients (OR 1.14, 95% CI 1.04-1.26, P = 0.006). CONCLUSIONS: We found that serum TC level is nonlinearly associated with the severity of HTGAP, and it can be a reliable predictor for early intervention and intensive care.
Asunto(s)
Pancreatitis , Humanos , Pancreatitis/diagnóstico , Estudios de Cohortes , Enfermedad Aguda , Proteína C-Reactiva/metabolismo , Colesterol , China/epidemiología , Estudios RetrospectivosRESUMEN
BACKGROUND: Classical swine fever and porcine reproductive and respiratory syndrome have seriously affected the development of the swine breeding industry in China. Vaccine immunization remains the main way to prevent these infections. The aim of this study was to establish an optimized protocol for vaccine immunization against classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV). METHODS: Blood samples were collected from the anterior vena cava of pigs after immunization, and blood indices, secreted levels of specific antibodies and neutralizing antibodies associated with humoral immunity, the proliferation capacity of T lymphocytes as a measure of cellular immunity, and secreted levels of IFN-γ and TNF-α were determined. RESULTS: The results showed that simultaneous immunization against CSFV and PRRSV infections induced strong and specific humoral and T-cellular immune responses, high levels of cytokine IFN-γ secretion and delayed secretion of cytokine TNF-α. Moreover, significantly higher lymphocyte percentages and red blood cell and leukocyte counts were found in the group simultaneously immunized against CSFV and PRRSV. However, no statistically significant differences were observed in hemoglobin values, neutrophil counts, and median cell percentages among the S + PRRS, PRRS-S, and S-PRRS groups. CONCLUSION: This study demonstrated that simultaneous immunization against CSFV and PRRSV had the advantages of inducing a rapid, enhanced, and long-lasting immune response. These findings provide a theoretical basis for the establishment of a reasonable and optimized vaccine immunization protocol against CSFV and PRRSV in combination with a variety of other vaccine inoculations.